747,028 research outputs found
Review Of Encountering Chinese Networks: Western, Japanese, And Chinese Corporations In China, 1880-1937 By S. Cochran
Review Of Commercialization And Agricultural Development: Central And Eastern China, 1870-1937 By L. Brandt
PGGA: A predictable and grouped genetic algorithm for job scheduling
This paper presents a predictable and grouped genetic algorithm (PGGA) for job scheduling. The novelty of the PGGA is twofold: (1) a job workload estimation algorithm is designed to estimate a job workload based on its historical execution records, (2) the divisible load theory (DLT) is employed to predict an optimal fitness value by which the PGGA speeds up the convergence process in searching a large scheduling space. Comparison with traditional scheduling methods such as first-come-first-serve (FCFS) and random scheduling, heuristics such as a typical genetic algorithm, Min-Min and Max-Min indicates that the PGGA is more effective and efficient in finding optimal scheduling solutions
Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states
We construct coefficient matrices of size 2^l by 2^{n-l} associated with pure
n-qubit states and prove the invariance of the ranks of the coefficient
matrices under stochastic local operations and classical communication (SLOCC).
The ranks give rise to a simple way of partitioning pure n-qubit states into
inequivalent families and distinguishing degenerate families from one another
under SLOCC. Moreover, the classification scheme via the ranks of coefficient
matrices can be combined with other schemes to build a more refined
classification scheme. To exemplify we classify the nine families of four
qubits introduced by Verstraete et al. [Phys. Rev. A 65, 052112 (2002)] further
into inequivalent subfamilies via the ranks of coefficient matrices, and as a
result, we find 28 genuinely entangled families and all the degenerate classes
can be distinguished up to permutations of the four qubits. We also discuss the
completeness of the classification of four qubits into nine families
Concepts of quantum non-Markovianity: a hierarchy
Markovian approximation is a widely-employed idea in descriptions of the
dynamics of open quantum systems (OQSs). Although it is usually claimed to be a
concept inspired by classical Markovianity, the term quantum Markovianity is
used inconsistently and often unrigorously in the literature. In this report we
compare the descriptions of classical stochastic processes and quantum
stochastic processes (as arising in OQSs), and show that there are inherent
differences that lead to the non-trivial problem of characterizing quantum
non-Markovianity. Rather than proposing a single definition of quantum
Markovianity, we study a host of Markov-related concepts in the quantum regime.
Some of these concepts have long been used in quantum theory, such as quantum
white noise, factorization approximation, divisibility, Lindblad master
equation, etc.. Others are first proposed in this report, including those we
call past-future independence, no (quantum) information backflow, and
composability. All of these concepts are defined under a unified framework,
which allows us to rigorously build hierarchy relations among them. With
various examples, we argue that the current most often used definitions of
quantum Markovianity in the literature do not fully capture the memoryless
property of OQSs. In fact, quantum non-Markovianity is highly
context-dependent. The results in this report, summarized as a hierarchy
figure, bring clarity to the nature of quantum non-Markovianity.Comment: Clarifications and references added; discussion of the related
classical hierarchy significantly improved. To appear in Physics Report
An entanglement measure for n-qubits
Recently, Coffman, Kundu, and Wootters introduced the residual entanglement
for three qubits to quantify the three-qubit entanglement in Phys. Rev. A 61,
052306 (2000). In Phys. Rev. A 65, 032304 (2007), we defined the residual
entanglement for qubits, whose values are between 0 and 1. In this paper,
we want to show that the residual entanglement for qubits is a natural
measure of entanglement by demonstrating the following properties. (1). It is
SL-invariant, especially LU-invariant. (2). It is an entanglement monotone.
(3). It is invariant under permutations of the qubits. (4). It vanishes or is
multiplicative for product states.Comment: 16 pages, no figure
The gravitational field of a global monopole
We present an exact solution to the non-linear equation which describes a
global monopole in the flat space. We re-examine the metric and the geodesics
outside the global monopole. We will see that a global monopole produces a
repulsive gravitational field outside the core in addition to a solid angular
deficit. The lensing property of the global monopole and the global
monopole-antimonopole annihilation mechanism are studied.Comment: 8 pages, no figure
- …
