747,028 research outputs found

    Review Of Encountering Chinese Networks: Western, Japanese, And Chinese Corporations In China, 1880-1937 By S. Cochran

    Get PDF

    Review Of Commercialization And Agricultural Development: Central And Eastern China, 1870-1937 By L. Brandt

    Get PDF

    PGGA: A predictable and grouped genetic algorithm for job scheduling

    Get PDF
    This paper presents a predictable and grouped genetic algorithm (PGGA) for job scheduling. The novelty of the PGGA is twofold: (1) a job workload estimation algorithm is designed to estimate a job workload based on its historical execution records, (2) the divisible load theory (DLT) is employed to predict an optimal fitness value by which the PGGA speeds up the convergence process in searching a large scheduling space. Comparison with traditional scheduling methods such as first-come-first-serve (FCFS) and random scheduling, heuristics such as a typical genetic algorithm, Min-Min and Max-Min indicates that the PGGA is more effective and efficient in finding optimal scheduling solutions

    Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states

    Full text link
    We construct coefficient matrices of size 2^l by 2^{n-l} associated with pure n-qubit states and prove the invariance of the ranks of the coefficient matrices under stochastic local operations and classical communication (SLOCC). The ranks give rise to a simple way of partitioning pure n-qubit states into inequivalent families and distinguishing degenerate families from one another under SLOCC. Moreover, the classification scheme via the ranks of coefficient matrices can be combined with other schemes to build a more refined classification scheme. To exemplify we classify the nine families of four qubits introduced by Verstraete et al. [Phys. Rev. A 65, 052112 (2002)] further into inequivalent subfamilies via the ranks of coefficient matrices, and as a result, we find 28 genuinely entangled families and all the degenerate classes can be distinguished up to permutations of the four qubits. We also discuss the completeness of the classification of four qubits into nine families

    Concepts of quantum non-Markovianity: a hierarchy

    Full text link
    Markovian approximation is a widely-employed idea in descriptions of the dynamics of open quantum systems (OQSs). Although it is usually claimed to be a concept inspired by classical Markovianity, the term quantum Markovianity is used inconsistently and often unrigorously in the literature. In this report we compare the descriptions of classical stochastic processes and quantum stochastic processes (as arising in OQSs), and show that there are inherent differences that lead to the non-trivial problem of characterizing quantum non-Markovianity. Rather than proposing a single definition of quantum Markovianity, we study a host of Markov-related concepts in the quantum regime. Some of these concepts have long been used in quantum theory, such as quantum white noise, factorization approximation, divisibility, Lindblad master equation, etc.. Others are first proposed in this report, including those we call past-future independence, no (quantum) information backflow, and composability. All of these concepts are defined under a unified framework, which allows us to rigorously build hierarchy relations among them. With various examples, we argue that the current most often used definitions of quantum Markovianity in the literature do not fully capture the memoryless property of OQSs. In fact, quantum non-Markovianity is highly context-dependent. The results in this report, summarized as a hierarchy figure, bring clarity to the nature of quantum non-Markovianity.Comment: Clarifications and references added; discussion of the related classical hierarchy significantly improved. To appear in Physics Report

    An entanglement measure for n-qubits

    Full text link
    Recently, Coffman, Kundu, and Wootters introduced the residual entanglement for three qubits to quantify the three-qubit entanglement in Phys. Rev. A 61, 052306 (2000). In Phys. Rev. A 65, 032304 (2007), we defined the residual entanglement for nn qubits, whose values are between 0 and 1. In this paper, we want to show that the residual entanglement for nn qubits is a natural measure of entanglement by demonstrating the following properties. (1). It is SL-invariant, especially LU-invariant. (2). It is an entanglement monotone. (3). It is invariant under permutations of the qubits. (4). It vanishes or is multiplicative for product states.Comment: 16 pages, no figure

    The gravitational field of a global monopole

    Full text link
    We present an exact solution to the non-linear equation which describes a global monopole in the flat space. We re-examine the metric and the geodesics outside the global monopole. We will see that a global monopole produces a repulsive gravitational field outside the core in addition to a solid angular deficit. The lensing property of the global monopole and the global monopole-antimonopole annihilation mechanism are studied.Comment: 8 pages, no figure
    corecore