4 research outputs found

    Development of a reactive stroma associated with prostatic intraepithelial neoplasia in EAF2 deficient mice

    Get PDF
    ELL-associated factor 2 (EAF2) is an androgen-responsive tumor suppressor frequently deleted in advanced prostate cancer that functions as a transcription elongation factor of RNA Pol II through interaction with the ELL family proteins. EAF2 knockout mice on a 129P2/OLA-C57BL/6J background developed late-onset lung adenocarcinoma, hepatocellular carcinoma, B-cell lymphoma and high-grade prostatic intraepithelial neoplasia. In order to further characterize the role of EAF2 in the development of prostatic defects, the effects of EAF2 loss were compared in different murine strains. In the current study, aged EAF2-/- mice on both the C57BL/6J and FVB/NJ backgrounds exhibited mPIN lesions as previously reported on a 129P2/OLA-C57BL/6J background. In contrast to the 129P2/OLA-C57BL/6J mixed genetic background, the mPIN lesions in C57BL/6J and FVB/NJ EAF2-/- mice were associated with stromal defects characteristic of a reactive stroma and a statistically significant increase in prostate microvessel density. Stromal inflammation and increased microvessel density was evident in EAF2-deficient mice on a pure C57BL/6J background at an early age and preceded the development of the histologic epithelial hyperplasia and neoplasia found in the prostates of older EAF2 -/- animals. Mice deficient in EAF2 had an increased recovery rate and a decreased overall response to the effects of androgen deprivation. EAF2 expression in human cancer was significantly down-regulated and microvessel density was significantly increased compared to matched normal prostate tissue; furthermore EAF2 expression was negatively correlated with microvessel density. These results suggest that the EAF2 knockout mouse on the C57BL/6J and FVB/NJ genetic backgrounds provides a model of PIN lesions associated with an altered prostate microvasculature and reactive stromal compartment corresponding to that reported in human prostate tumors. © 2013 Pascal et al

    T-Cell-Based Immunosuppressive Therapy Inhibits the Development of Natural Antibodies in Infant Baboons

    No full text
    Background. We set out to determine whether B-cell tolerance to A/B-incompatible alloantigens and pig xenoantigens could be achieved in infant baboons. Methods. Artery patch grafts were implanted in the abdominal aorta in 3-month-old baboons using A/B-incompatible (AB-I) allografts or wild-type pig xenografts (pig). Group 1 (Gp1) (controls, n = 6) received no immunosuppressive therapy (IS) and no graft. Gp2 (n = 2) received an AB-I or pig graft but no IS. Gp3 received AB-I grafts + IS (Gp3A: n = 2) or pig grafts + IS (Gp3B: n = 2). IS consisted of ATG, anti-CD154mAb, and mycophenolate mofetil until age 8 to 12 months. Gp4 (n = 2) received IS on Results. In Gp1, anti-A/B and cytotoxic anti-pig immunoglobulin-M increased steadily during the first year. Gp2 became sensitized to donor-specific AB-I or pig antigens within 2 weeks. Gp3 and Gp4 infants that received anti-CD154mAb made no or minimal anti-A/B and anti-pig antibodies while receiving IS. Discussion. The production of natural anti-A/B and anti-pig antibodies was inhibited by IS with anti-CD154mAb, even in the absence of an allograft or xenograft, suggesting that natural antibodies may not be entirely T-cell independent. These data are in contrast to clinical experience with AB-I allotransplantation in infants, who cease producing only donor-specific antibodies
    corecore