89 research outputs found

    Mangroves enhance the biomass of coral reef fish communities in the Caribbean

    Get PDF
    Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo

    Get PDF
    The unique properties of the tumour microenvironment can be exploited by using recombinant anaerobic clostridial spores as highly selective gene delivery vectors. Although several recombinant Clostridium species have been generated during the past decade, their efficacy has been limited. Our goal was to substantially improve the prospects of clostridia as a gene delivery vector. Therefore, we have assessed a series of nitroreductase (NTR) enzymes for their capacity to convert the innocuous CB1954 prodrug to its toxic derivative. Among the enzymes tested, one showed superior prodrug turnover characteristics. In addition, we established an efficient gene transfer procedure, based on conjugation, which allows for the first time genetic engineering of Clostridium strains with superior tumour colonisation properties with high success rates. This conjugation procedure was subsequently used to create a recombinant C. sporogenes overexpressing the isolated NTR enzyme. Finally, analogous to a clinical setting situation, we have tested the effect of multiple consecutive treatment cycles, with antibiotic bacterial clearance between cycles. Importantly, this regimen demonstrated that intravenously administered spores of NTR-recombinant C. sporogenes produced significant antitumour efficacy when combined with prodrug administration

    A Broadly Flavivirus Cross-Neutralizing Monoclonal Antibody that Recognizes a Novel Epitope within the Fusion Loop of E Protein

    Get PDF
    Flaviviruses are a group of human pathogenic, enveloped RNA viruses that includes dengue (DENV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses. Cross-reactive antibodies against Flavivirus have been described, but most of them are generally weakly neutralizing. In this study, a novel monoclonal antibody, designated mAb 2A10G6, was determined to have broad cross-reactivity with DENV 1–4, YFV, WNV, JEV, and TBEV. Phage-display biopanning and structure modeling mapped 2A10G6 to a new epitope within the highly conserved flavivirus fusion loop peptide, the 98DRXW101 motif. Moreover, in vitro and in vivo experiments demonstrated that 2A10G6 potently neutralizes DENV 1–4, YFV, and WNV and confers protection from lethal challenge with DENV 1–4 and WNV in murine model. Furthermore, functional studies revealed that 2A10G6 blocks infection at a step after viral attachment. These results define a novel broadly flavivirus cross-reactive mAb with highly neutralizing activity that can be further developed as a therapeutic agent against severe flavivirus infections in humans

    Quantifying Individual Variation in the Propensity to Attribute Incentive Salience to Reward Cues

    Get PDF
    If reward-associated cues acquire the properties of incentive stimuli they can come to powerfully control behavior, and potentially promote maladaptive behavior. Pavlovian incentive stimuli are defined as stimuli that have three fundamental properties: they are attractive, they are themselves desired, and they can spur instrumental actions. We have found, however, that there is considerable individual variation in the extent to which animals attribute Pavlovian incentive motivational properties (“incentive salience”) to reward cues. The purpose of this paper was to develop criteria for identifying and classifying individuals based on their propensity to attribute incentive salience to reward cues. To do this, we conducted a meta-analysis of a large sample of rats (N = 1,878) subjected to a classic Pavlovian conditioning procedure. We then used the propensity of animals to approach a cue predictive of reward (one index of the extent to which the cue was attributed with incentive salience), to characterize two behavioral phenotypes in this population: animals that approached the cue (“sign-trackers”) vs. others that approached the location of reward delivery (“goal-trackers”). This variation in Pavlovian approach behavior predicted other behavioral indices of the propensity to attribute incentive salience to reward cues. Thus, the procedures reported here should be useful for making comparisons across studies and for assessing individual variation in incentive salience attribution in small samples of the population, or even for classifying single animals

    Cost-Effectiveness of Adolescent Pertussis Vaccination for The Netherlands: Using an Individual-Based Dynamic Model

    Get PDF
    BACKGROUND: Despite widespread immunization programs, a clear increase in pertussis incidence is apparent in many developed countries during the last decades. Consequently, additional immunization strategies are considered to reduce the burden of disease. The aim of this study is to design an individual-based stochastic dynamic framework to model pertussis transmission in the population in order to predict the epidemiologic and economic consequences of the implementation of universal booster vaccination programs. Using this framework, we estimate the cost-effectiveness of universal adolescent pertussis booster vaccination at the age of 12 years in the Netherlands. METHODS/PRINCIPAL FINDINGS: We designed a discrete event simulation (DES) model to predict the epidemiological and economic consequences of implementing universal adolescent booster vaccination. We used national age-specific notification data over the period 1996-2000--corrected for underreporting--to calibrate the model assuming a steady state situation. Subsequently, booster vaccination was introduced. Input parameters of the model were derived from literature, national data sources (e.g. costing data, incidence and hospitalization data) and expert opinions. As there is no consensus on the duration of immunity acquired by natural infection, we considered two scenarios for this duration of protection (i.e. 8 and 15 years). In both scenarios, total pertussis incidence decreased as a result of adolescent vaccination. From a societal perspective, the cost-effectiveness was estimated at €4418/QALY (range: 3205-6364 € per QALY) and €6371/QALY (range: 4139-9549 € per QALY) for the 8- and 15-year protection scenarios, respectively. Sensitivity analyses revealed that the outcomes are most sensitive to the quality of life weights used for pertussis disease. CONCLUSIONS/SIGNIFICANCE: To our knowledge we designed the first individual-based dynamic framework to model pertussis transmission in the population. This study indicates that adolescent pertussis vaccination is likely to be a cost-effective intervention for The Netherlands. The model is suited to investigate further pertussis booster vaccination strategies

    Transfusion-transmitted infections

    Get PDF
    Although the risk of transfusion-transmitted infections today is lower than ever, the supply of safe blood products remains subject to contamination with known and yet to be identified human pathogens. Only continuous improvement and implementation of donor selection, sensitive screening tests and effective inactivation procedures can ensure the elimination, or at least reduction, of the risk of acquiring transfusion transmitted infections. In addition, ongoing education and up-to-date information regarding infectious agents that are potentially transmitted via blood components is necessary to promote the reporting of adverse events, an important component of transfusion transmitted disease surveillance. Thus, the collaboration of all parties involved in transfusion medicine, including national haemovigilance systems, is crucial for protecting a secure blood product supply from known and emerging blood-borne pathogens
    corecore