8 research outputs found

    Probing the Production of Amidated Peptides following Genetic and Dietary Copper Manipulations

    Get PDF
    Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM+/−) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM+/− mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM+/− mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides

    Ontogeny of prolyl endopeptidase, pyroglutamyl peptidase I, TRH, and its metabolites in rat pancreas

    No full text
    International audienc

    Differences in steroid 5alpha-reductase iso-enzymes expression between normal and pathological human prostate tissue.

    No full text
    International audienceWe studied the expression level and cell-specific expression patterns of 5alpha-reductase (5alpha-R) types 1 and 2 iso-enzymes in human hyperplastic and malignant prostate tissue by semi-quantitative RT-PCR and in situ hybridisation analyses. In situ hybridisation established that 5alpha-R1 mRNA is preferentially expressed by epithelial cells and little expressed by stromal cells whereas 5alpha-R2 mRNA is expressed by both epithelium and stroma. Semi-quantitative RT-PCR has been performed on total RNA from different zones of normal prostate, BPH tissues and liver. We found that 5alpha-R1 and 5alpha-R2 mRNAs expression was near the same in all zones of normal prostate. In BPH tissue, 5alpha-R1 and 5alpha-R2 mRNAs expression was slightly but significantly increased, when it was compared to the levels recorded for normal prostate. In cancer samples, 5alpha-R1 mRNA expression was higher than in normal and hyperplastic prostate but the level of 5alpha-R2 mRNA was not statistically different from that observed in the different zones of normal prostate. In liver, 5alpha-R2 mRNA level was similar to that measured in BPH but 5alpha-R1 mRNA expression was ten times higher. The increase observed in 5alpha-R isoenzymes expression in BPH tissue could play an important role in the pathogenesis and/or maintenance of the disease

    Differences in steroid 5alpha-reductase iso-enzymes expression between normal and pathological human prostate tissue.

    No full text
    International audienceWe studied the expression level and cell-specific expression patterns of 5alpha-reductase (5alpha-R) types 1 and 2 iso-enzymes in human hyperplastic and malignant prostate tissue by semi-quantitative RT-PCR and in situ hybridisation analyses. In situ hybridisation established that 5alpha-R1 mRNA is preferentially expressed by epithelial cells and little expressed by stromal cells whereas 5alpha-R2 mRNA is expressed by both epithelium and stroma. Semi-quantitative RT-PCR has been performed on total RNA from different zones of normal prostate, BPH tissues and liver. We found that 5alpha-R1 and 5alpha-R2 mRNAs expression was near the same in all zones of normal prostate. In BPH tissue, 5alpha-R1 and 5alpha-R2 mRNAs expression was slightly but significantly increased, when it was compared to the levels recorded for normal prostate. In cancer samples, 5alpha-R1 mRNA expression was higher than in normal and hyperplastic prostate but the level of 5alpha-R2 mRNA was not statistically different from that observed in the different zones of normal prostate. In liver, 5alpha-R2 mRNA level was similar to that measured in BPH but 5alpha-R1 mRNA expression was ten times higher. The increase observed in 5alpha-R isoenzymes expression in BPH tissue could play an important role in the pathogenesis and/or maintenance of the disease
    corecore