6 research outputs found

    Electroanalytical thread-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes

    Get PDF
    Microflow systems are powerful analytical tools that explore similar principles of typical flow injection analysis driven to in a microfluidic device. Generally, microfluidic devices can promote a low consumption of reagents and samples, high speed of analysis and possibility of portability. Several advances have been reached applying a simple and low cost device based on cotton thread as microfluidic channel where the transportation of solutions is based on capillary force helped by gravity. In the present work, we have demonstrated the versatility of thread-based electroanalytical devices (μTED) constructed using a cotton thread as the solution channel and screen-printed electrodes (SPE) surface modified with carbon nanotubes (CNT) as electrochemical detectors for the amperometric determination of estriol hormone in pharmaceutical samples. The parameters involved in the amperometric detection and microflow system were studied and optimized, using the best experimental conditions (flow rate of 0.50 μL s−1, 10 mm of analytical path, 2.0 μL of volume of injection and potential of detection of 0.75 V) a linear response was observed for concentration range (LDR) of 1.0 to 1000 μmol L−1 with limits of detection (LOD) and quantification (LOQ) of 0.53 μmolL−1 and 1.77 μmolL−1, respectively, and frequency of injection of 32 per hour. The proposed methodology was applied for determination of estriol in commercial samples and results were compared with those provided by spectrophotometric method (official methodology). The obtained results are in agreement at a 95% of confidence level

    Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water

    Get PDF
    © 2017 Elsevier B.V. Microfluidic devices constructed using low cost materials presents as alternative for conventional flow analysis systems because they provide advantages as low consumption of reagents and samples, high speed of analysis, possibility of portability and the easiness of construction and maintenance. Herein, is described for the first time the use of an electrochemical biosensor for phenol detection combined with a very simple and efficient microfluidic device based on commercial textile threads. Taking advantages of capillary phenomena and gravity forces, the solution transportation is promoted without any external forces or injection pump. Screen printed electrodes were modified with carbon nanotubes/gold nanoparticles followed by covalent binding of tyrosinase. After the biosensor electrochemical characterization by cyclic voltammetry technique, the optimization of relevant parameters such as pH, potential of detection and linear range for the biosensor performance was carried out; the system was evaluated for analytical phenol detection presenting limit of detection and limit of quantification 2.94 nmol L −1 and 8.92 nmol L −1 respectively. The proposed system was applied on phenol addition and recovery studies in drinking water, obtaining recoveries rates between 90% and 110%

    Novel and highly stable strategy for the development of microfluidic enzymatic assays based on the immobilization of horseradish peroxidase (HRP) into cotton threads

    No full text
    The use of biological components in the development of new methods of analysis and point-of-care (POC) devices is an ever-expanding theme in analytical chemistry research, due to the immense potential for early diagnosis of diseases and monitoring of biomarkers. In the present work, the evaluation of an electrochemical microfluidic device based on the immobilization of horseradish peroxidase (HRP) enzyme into chemically treated cotton threads is described. This bioreactor was used as a channel for the build of the microfluidic device, which has allowed to use of a non-modified screen-printed electrode (SPE) as an amperometric detector. Cotton threads were treated using citric acid, and the immobilization of HRP has been performed by EDC/NHS crosslinking, connecting amine groups of the enzymes to carboxylic acids in the cellulosic structure. For the analytical evaluation, an amperometric assay for hydrogen peroxide detection was performed after the injection of H2O2 and hydroquinone (HQN) concomitantly. The enzymatic reaction consumes H2O2 leading to the formation of O-quinone, which is readily reducible at non-modified SPE. Several experimental parameters related to enzyme immobilization have been investigated and under the best set of conditions, a good analytical performance was obtained. In addition, the threads were freezer-stored and, after 12 weeks, 84% of hydrogen peroxide sensitivity was maintained, which is very reasonable for enzyme-based systems and still offers good analytical precision. Therefore, a simple and inexpensive microfluidic system was reported by crosslinking carboxylic groups to amine-containing macromolecules, suggesting a new platform for many other protein-based assays

    Novel approach based on GQD-PHB as anchoring platform for the development of SARS-CoV-2 electrochemical immunosensor

    No full text
    In the present work, we report an innovative approach for immunosensors construction. The experimental strategy is based on the anchoring of biological material at screen-printed carbon electrode (SPE) modified with electrodeposited Graphene Quantum Dots (GQD) and polyhydroxybutyric acid (PHB). It was used as functional substract basis for the recognition site receptor-binding domain (RBD) from coronavirus spike protein (SARS-CoV-2), for the detection of Anti-S antibodies (AbS). SEM images and EDS spectra suggest an interaction of the protein with GQD-PHB sites at the electrode surface. Differential pulse voltametric (DPV) measurements were performed before and after incubation, in presence of the target, shown a decrease in voltametric signal of an electrochemical probe ([Fe(CN)6]3/4-). Using the optimal experimental conditions, analytical curves were performed in PBS and human serum spiked with AbS showing a slight matrix effect and a relationship between voltametric signal and AbS concentration in the range of 100 ng mL−1 and 10 μg mL−1. The selectivity of the proposed sensor was tested against yellow fever antibodies (YF) and the selective layer on the electrode surface did not interact with these unspecific antibodies. Eight samples of blood serum were analyzed and 87.5% of these total investigated provided adequate results. In addition, the present approach showed better results against traditional EDC/NHS reaction with enhancements in time and the possibility to develop an immunosensor in a single drop, since the proteins can be anchored prior to the electrode modification step

    Highly selective monitoring of metals by using ion-imprinted polymers

    No full text
    corecore