38 research outputs found

    Model voor de overgang rechtshandig DNA - linkshandig DNA

    No full text

    Development of new injectable bulking agents:Biocompatibility of radiopaque polymeric microspheres studies in a mouse model

    No full text
    Radiopaque polymeric microspheres have a potential as new bulking agents for treatment of stress urinary incontinence (SUI). The advantage over existing bulking agents ties in their X-ray visibility in situ; other polymeric bulking agents (e.g., PTFE or silicone rubbers) are practically radiolucent (i.e., incapable of absorbing X-radiation). Radiopacity is useful in practice because of the high spatial accuracy of X-ray imaging. For instance, X-ray fluoroscopy can be used to assess possible migration of the bulking agent over time or to provide guidance in cases in which a second injection of a bulking agent is necessary (repeated treatment of SUI). Biocompatibility of injected radiopaque microspheres was investigated in vivo by using the mouse as a model. Microspheres were injected subcutaneously (9 animals) or intramuscularly (9 animals), and follow-up was 8 days or 3 months. X-ray fluoroscopy gave clear images of the miscrospheres as an ensemble, and it was found that no migration occurred during 3 months. Histopathology confirmed that all microspheres stayed close to the site of the injection. The microspheres appeared to be well tolerated; only a few giant cells, manifesting a mild inflammatory reaction, were encountered. At 3 months, cappillary blood vessels were observed throughout the microsphere beds, and macrophages and fibroblast cells were seen in between the microspheres. This is encouraging with respect to the intended application, although it must be acknowledged that the data refer merely to a mouse model. Further experiments with larger, more representative models (rabbit and goat) are in progress. &amp;COPY; 2005 Wiley Periodicals, Inc.</p

    Biodegradable three-dimensional networks of poly(dimethylamino ethyl methacrylate). Synthesis, characterization and in vitro studies of structural degradation and cytotoxicity

    No full text
    In ophthalmology, there is a need for novel degradable biomaterials for e.g. controlled drug release in the vitreous body. These degradable materials should feature both excellent biocompatibility, and well-defined kinetics of degradation. In most cases, poly(D,L-lactic acid), or poly(lactic-co-glycolic acid) are used. These materials, however, suffer from some serious drawbacks, since the degradation kinetics are difficult to control, especially since the so-called 'burst-degradation' occurs. Here, we describe a set of novel polymeric networks which largely consist of poly(dimethylamino ethyl methacrylate) (poly(DMAEMA)); these materials are crosslinked via a dimethacrylate molecule that contains two carbonate groups. This system is susceptible to hydrolytic scission. The degradation products do nor exert a catalytic effect on the ongoing degradation reaction (i.e. there is no burst effect). We describe the synthesis of three of these materials, which differ merely with regard to the crosslinker content. These materials were characterized through DMTA, H-1 NMR and FT-IR spectroscopy, and scanning electron microscopy. The reaction DMAEMA + 2-hydroxyethyl methacrylate (HEMA) was studied in detail, using H-1 NMR spectroscopy, and these experiments revealed that the reaction of DMAEMA and HEMA produces a random (Bernouillian-type) copolymer. From this, we contend that the new materials have more or less uniform distribution of the crosslinks throughout their volume. Structural degradation of the three materials was studied in vitro, at pH 7.4, 9.1 and 12.0. It is found that the materials exhibit smooth hydrolysis, which can be controlled via the crosslink density and the pH, as was expected a priori. It should be noted that degradation of these materials produces non-hydrolysable, but water-soluble, oligo(DMAEMA) and poly(DMAEMA) molecules. We subsequently performed in vitro studies on the biocompatibility of these materials. The MTT cytotoxicity assay revealed that the materials were cytotoxic to chondrosarcoma cells. This is most probably due to local increase of the pH due to the basic character of the pending dimethylamino groups. Cytotoxicity remained virtually unchanged after extended washing with water. This indicates that the cytotoxicity is an intrinsic property of the material and was not caused by remnants of free monomer. Cytotoxicity was also seen in cell cultures (human fibroblasts isolated from donor corneas) which were grown in contact with the materials. It is concluded that the new materials have attractive degradation characteristics, but their cytotoxicity makes them unsuitable for applications in ophthalmology. (C) 2000 Elsevier Science Ltd. All rights reserved
    corecore