1,308 research outputs found

    Lie Detection using functional MRI

    Get PDF
    published_or_final_versio

    Prognostic value of hedgehog signal component expressions in hepatoblastoma patients

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Activation of hedgehog (Hh) pathway has been implicated in the development of human malignancies. Hh as well as related downstream target genes has been extensively studied in many kinds of malignant tumours for clinical diagnostic or prognostic utilities. This study aimed at investigating whether Hh molecules provides a molecular marker of hepatoblastoma malignancy.</p> <p>Methods</p> <p>We obtained tissue sections from 32 patients with hepatoblastoma as well as cholestasis and normal control. Immunohistochemical analysis were performed to determine Hh signal components in human hepatoblastoma. The prognostic significance of single expression of Hh signal components were evaluated using Cox proportional hazards regression models and Kaplan-Meier survival analysis for statistical analysis.</p> <p>Results</p> <p>Expression of Hh signal components showed an increase in hepatoblastoma compared with chole stasis and normal tissues. There was a positive correlation between Smo or Gli1 expression and tumor clinicopathological features, such as histological type, tumor grade, tumor size and clinical stage. Both Smo or Gli1 protein high expression was significantly associated with poor prognosis by univariate analyses and multivariate analyses.</p> <p>Conclusions</p> <p>Abnormal Hh signaling activation plays important roles in the malignant potential of hepatoblastoma. Gli1 expression is an independent prognostic marker.</p

    The role of mTOR and phospho-p70S6K in pathogenesis and progression of gastric carcinomas: an immunohistochemical study on tissue microarray

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>mTOR signaling pathway and its downstream serine/threonine kinase p70S6k were frequently activated in human cancers. The dysregulation of the mTOR pathway has been found to be a contributing factor of a variety of different cancer. To investigate the role of mTOR signal pathway in the stepwise development of gastric carcinomas, we analyzed the correlations between the mTOR and P70S6K expression and clinic pathological factors and studied its prognostic role in gastric carcinomas.</p> <p>Methods</p> <p>mTOR and phospho-p70S6K proteins were examined by immunohistochemistry on tissue microarray containing gastric carcinomas (n = 412), adenomas (n = 47) and non-neoplastic mucosa (NNM, n = 197) with a comparison of their expression with clinicopathological parameters of carcinomas.</p> <p>Results</p> <p>There was no difference of mTOR expression between these three tissues (p > 0.05). Cytoplasmic phospho(p)-P706SK was highly expressed in adenoma, compared with ANNMs (p < 0.05), whereas its nuclear expression was lower in gastric carcinomas than gastric adenoma and ANNMs (p < 0.05). These three markers were preferably expressed in the older patients with gastric cancer and intestinal-type carcinoma (p < 0.05). mTOR expression was positively correlated with the cytoplasmic and nuclear expression of p-P70S6K(p < 0.05). Nuclear P70S6K was inversely linked to tumor size, depth of invasion, lymph node metastasis and UICC staging (p < 0.05). Univariate analysis indicated that expression of mTOR and nuclear p-P70S6K was closely linked to favorable prognosis of the carcinoma patients (p < 0.05). Multivariate analysis showed that age, depth of invasion, lymphatic invasion, lymph node metastasis, Lauren's classification and mTOR expression were independent prognostic factors for overall gastric carcinomas (p < 0.05).</p> <p>Conclusion</p> <p>Aberrant expression of p-P70S6K possibly contributes to pathogenesis, growth, invasion and metastasis of gastric carcinomas. It was considered as a promising marker to indicate the aggressive behaviors and prognosis of gastric carcinomas.</p

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψ′→π+π−J/ψ(J/ψ→γppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ′\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861−13+6(stat)−26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Tuning fulleride electronic structure and molecular ordering via variable layer index

    Full text link
    C60 fullerides are uniquely flexible molecular materials that exhibit a rich variety of behavior, including superconductivity and magnetism in bulk compounds, novel electronic and orientational phases in thin films, and quantum transport in a single-C60 transistor. The complexity of fulleride properties stems from the existence of many competing interactions, such as electron-electron correlations, electron-vibration coupling, and intermolecular hopping. The exact role of each interaction is controversial due to the difficulty of experimentally isolating the effects of a single interaction in the intricate fulleride materials. Here we report a unique level of control of the material properties of KxC60 ultra-thin films through well-controlled atomic layer indexing and accurate doping concentrations. Using STM techniques, we observe a series of electronic and structural phase transitions as the fullerides evolve from two-dimensional monolayers to quasi-threedimensional multilayers in the early stages of layer-by-layer growth. These results demonstrate the systematic evolution of fulleride electronic structure and molecular ordering with variable KxC60 film layer index, and shed new light on creating novel molecular structures and devices.Comment: 16 pages, 4 figures, to appear in Nature Material

    Transthyretin Aggregation Pathway toward the Formation of Distinct Cytotoxic Oligomers

    Get PDF
    Characterization of small oligomers formed at an early stage of amyloid formation is critical to understanding molecular mechanism of pathogenic aggregation process. Here we identifed and characterized cytotoxic oligomeric intermediates populated during transthyretin (TTR) aggregation process. Under the amyloid-forming conditions, TTR initially forms a dimer through interactions between outer strands. The dimers are then associated to form a hexamer with a spherical shape, which serves as a building block to self-assemble into cytotoxic oligomers. Notably, wild-type (WT) TTR tends to form linear oligomers, while aTTR variant(G53A) prefers forming annular oligomers with pore-like structures. Structural analyses of the amyloidogenic intermediates using circular dichroism (CD) and solid-state NMR revealthatthe dimer and oligomers have a signifcant degree of native-like β-sheet structures (35–38%), but with more disordered regions (~60%)than those of nativeTTR.TheTTR variant oligomers are also less structured than WT oligomers. The partially folded nature of the oligomeric intermediates might be a common structural property of cytotoxic oligomers.The higher fexibility of the dimer and oligomers may also compensate for the entropic loss due to the oligomerization of the monomers
    • …
    corecore