11 research outputs found

    Four evolutionary trajectories underlie genetic intratumoral variation in childhood cancer

    No full text
    A major challenge to personalized oncology is that driver mutations vary among cancer cells inhabiting the same tumor. Whether this reflects principally disparate patterns of Darwinian evolution in different tumor regions has remained unexplored1–5. We mapped the prevalence of genetically distinct clones over 250 regions in 54 childhood cancers. This showed that primary tumors can simultaneously follow up to four evolutionary trajectories over different anatomic areas. The most common pattern consists of subclones with very few mutations confined to a single tumor region. The second most common is a stable coexistence, over vast areas, of clones characterized by changes in chromosome numbers. This is contrasted by a third, less frequent, pattern where a clone with driver mutations or structural chromosome rearrangements emerges through a clonal sweep to dominate an anatomical region. The fourth and rarest pattern is the local emergence of a myriad of clones with TP53 inactivation. Death from disease was limited to tumors exhibiting the two last, most dynamic patterns

    Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells

    No full text
    Unlike the mechanisms involved in the death of neuronal cell bodies, those causing the elimination of processes are not well understood owing to the lack of suitable experimental systems. As the neurotrophin receptor p75(NTR) is known to restrict the growth of neuronal processes, we engineered mouse embryonic stem (ES) cells to express an Ngfr (p75(NTR)) cDNA under the control of the Mapt locus (the gene encoding tau), which begins to be active when ES cell-derived progenitors start elongating processes. This caused a progressive, synchronous degeneration of all processes, and a prospective proteomic analysis showed increased levels of the sugar-binding protein galectin-1 in the p75(NTR)-engineered cells. Function-blocking galectin-1 antibodies prevented the degeneration of processes, and recombinant galectin-1 caused the processes of wild-type neurons to degenerate first, followed by the cell bodies. In vivo, the application of a glutamate receptor agonist, a maneuver known to upregulate p75(NTR), led to an increase in the amount of galectin-1 and to the degeneration of neurons and their processes in a galectin-1-dependent fashion. Section of the sciatic nerve also rapidly upregulated levels of p75(NTR) and galectin-1 in terminal Schwann cells, and the elimination of nerve endings was delayed at the neuromuscular junction of mice lacking Lgals1 (the gene encoding galectin-1). These results indicate that galectin-1 actively participates in the elimination of neuronal processes after lesion, and that engineered ES cells are a useful tool for studying relevant aspects of neuronal degeneration that have been hitherto difficult to analyze

    Section Review Central & Peripheral Nervous Systems: Mechanisms of apoptosis as drug targets in the central nervous system

    No full text

    Oligodendrocyte Development in Culture Systems

    No full text
    corecore