1,817 research outputs found

    Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Data Access

    Full text link
    Pregel is a popular distributed computing model for dealing with large-scale graphs. However, it can be tricky to implement graph algorithms correctly and efficiently in Pregel's vertex-centric model, especially when the algorithm has multiple computation stages, complicated data dependencies, or even communication over dynamic internal data structures. Some domain-specific languages (DSLs) have been proposed to provide more intuitive ways to implement graph algorithms, but due to the lack of support for remote access --- reading or writing attributes of other vertices through references --- they cannot handle the above mentioned dynamic communication, causing a class of Pregel algorithms with fast convergence impossible to implement. To address this problem, we design and implement Palgol, a more declarative and powerful DSL which supports remote access. In particular, programmers can use a more declarative syntax called chain access to naturally specify dynamic communication as if directly reading data on arbitrary remote vertices. By analyzing the logic patterns of chain access, we provide a novel algorithm for compiling Palgol programs to efficient Pregel code. We demonstrate the power of Palgol by using it to implement several practical Pregel algorithms, and the evaluation result shows that the efficiency of Palgol is comparable with that of hand-written code.Comment: 12 pages, 10 figures, extended version of APLAS 2017 pape

    Effects of AR7 Joint Complex on arthralgia for patients with osteoarthritis: Results of a three-month study in Shanghai, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis-induced arthralgia is a common cause of morbidity in both men and women worldwide. AR7 Joint Complex is a nutritional supplement containing various ingredients including sternum collagen II and methylsulfonylmethane. The product has been marketed in United States for over a decade, but clinical data measuring the effectiveness of this supplement in relieving arthralgia is lacking. The goal of this study was to determine the effect of AR7 Joint Complex on osteoarthritis.</p> <p>Methods</p> <p>A total of 100 patients over the age of 50 who had osteoarthritis were recruited to the double-blind study and randomly assigned into either treatment or placebo control groups. The patients in the treatment group were given AR7 Joint Complex orally, 1 capsule daily for 12 weeks, while the patients in the control group were given a placebo for the same period of time. Prior to and at the end of the study, data including Quality of Life questionnaires (SF-36), visual analog scales (1 to 100 mm), and X-rays of affected joints were collected.</p> <p>Results</p> <p>A total of 89 patients completed the study: 44 from the treatment group and 45 from the control group. No significant change in X-ray results was found in either group after the study. However, there was a significant decrease in patients complaining of arthralgia and tenderness (P < 0.01) in the treatment group and there was also a significant difference between the treatment and control groups at the end of the study. In addition, for Quality of Life data, the body pain index (BP) in the treatment group was significantly improved (P < 0.05) compared to the control group. No significant toxicity was noted in either group.</p> <p>Conclusion</p> <p>AR7 Joint Complex appears to have short-term effects in relieving pain in patients with osteoarthritis. Whether such an effect is long-lasting remains to be seen.</p

    Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions

    Get PDF
    Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident blackbody radiation from sources at temperatures in the range 400 - 1600 {\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8 Figures

    Strain-dependent host transcriptional responses to toxoplasma infection are largely conserved in mammalian and avian hosts

    Get PDF
    Toxoplasma gondii has a remarkable ability to infect an enormous variety of mammalian and avian species. Given this, it is surprising that three strains (Types I/II/III) account for the majority of isolates from Europe/North America. The selective pressures that have driven the emergence of these particular strains, however, remain enigmatic. We hypothesized that strain selection might be partially driven by adaptation of strains for mammalian versus avian hosts. To test this, we examine in vitro, strain-dependent host responses in fibroblasts of a representative avian host, the chicken (Gallus gallus). Using gene expression profiling of infected chicken embryonic fibroblasts and pathway analysis to assess host response, we show here that chicken cells respond with distinct transcriptional profiles upon infection with Type II versus III strains that are reminiscent of profiles observed in mammalian cells. To identify the parasite drivers of these differences, chicken fibroblasts were infected with individual F1 progeny of a Type II x III cross and host gene expression was assessed for each by microarray. QTL mapping of transcriptional differences suggested, and deletion strains confirmed, that, as in mammalian cells, the polymorphic rhoptry kinase ROP16 is the major driver of strain-specific responses. We originally hypothesized that comparing avian versus mammalian host response might reveal an inversion in parasite strain-dependent phenotypes; specifically, for polymorphic effectors like ROP16, we hypothesized that the allele with most activity in mammalian cells might be less active in avian cells. Instead, we found that activity of ROP16 alleles appears to be conserved across host species; moreover, additional parasite loci that were previously mapped for strain-specific effects on mammalian response showed similar strain-specific effects in chicken cells. These results indicate that if different hosts select for different parasite genotypes, the selection operates downstream of the signaling occurring during the beginning of the host's immune response. © 2011 Ong et al

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury

    The Role of the Novel Exopolyphosphatase MT0516 in Mycobacterium tuberculosis Drug Tolerance and Persistence

    Get PDF
    Inorganic polyphosphate (poly P) has been postulated to play a regulatory role in the transition to bacterial persistence. In bacteria, poly P balance in the cell is maintained by the hydrolysis activity of the exopolyphosphatase PPX. However, the Mycobacterium tuberculosis PPX has not been characterized previously. Here we show that recombinant MT0516 hydrolyzes poly P, and an MT0516-deficient M. tuberculosis mutant exhibits elevated intracellular levels of poly P and increased expression of the genes mprB, sigE, and rel relative to the isogenic wild-type strain, indicating poly P-mediated signaling. Deficiency of MT0516 resulted in decelerated growth during logarithmic-phase in axenic cultures, and tolerance to the cell wall-active drug isoniazid. The MT0516-deficient mutant showed a significant survival defect in activated human macrophages and reduced persistence in the lungs of guinea pigs. We conclude that exopolyphosphatase is required for long-term survival of M. tuberculosis in necrotic lung lesions

    Selective inhibitors of cardiac ADPR cyclase as novel anti-arrhythmic compounds

    Get PDF
    ADP-ribosyl cyclases (ADPRCs) catalyse the conversion of nicotinamide adenine dinucleotide to cyclic adenosine diphosphoribose (cADPR) which is a second messenger involved in Ca2+ mobilisation from intracellular stores. Via its interaction with the ryanodine receptor Ca2+ channel in the heart, cADPR may exert arrhythmogenic activity. To test this hypothesis, we have studied the effect of novel cardiac ADPRC inhibitors in vitro and in vivo in models of ventricular arrhythmias. Using a high-throughput screening approach on cardiac sarcoplasmic reticulum membranes isolated from pig and rat and nicotinamide hypoxanthine dinuleotide as a surrogate substrate, we have identified potent and selective inhibitors of an intracellular, membrane-bound cardiac ADPRC that are different from the two known mammalian ADPRCs, CD38 and CD157/Bst1. We show that two structurally distinct cardiac ADPRC inhibitors, SAN2589 and SAN4825, prevent the formation of spontaneous action potentials in guinea pig papillary muscle in vitro and that compound SAN4825 is active in vivo in delaying ventricular fibrillation and cardiac arrest in a guinea pig model of Ca2+ overload-induced arrhythmia. Inhibition of cardiac ADPRC prevents Ca2+ overload-induced spontaneous depolarizations and ventricular fibrillation and may thus provide a novel therapeutic principle for the treatment of cardiac arrhythmias

    Drug Discovery Using Chemical Systems Biology: Identification of the Protein-Ligand Binding Network To Explain the Side Effects of CETP Inhibitors

    Get PDF
    Systematic identification of protein-drug interaction networks is crucial to correlate complex modes of drug action to clinical indications. We introduce a novel computational strategy to identify protein-ligand binding profiles on a genome-wide scale and apply it to elucidating the molecular mechanisms associated with the adverse drug effects of Cholesteryl Ester Transfer Protein (CETP) inhibitors. CETP inhibitors are a new class of preventive therapies for the treatment of cardiovascular disease. However, clinical studies indicated that one CETP inhibitor, Torcetrapib, has deadly off-target effects as a result of hypertension, and hence it has been withdrawn from phase III clinical trials. We have identified a panel of off-targets for Torcetrapib and other CETP inhibitors from the human structural genome and map those targets to biological pathways via the literature. The predicted protein-ligand network is consistent with experimental results from multiple sources and reveals that the side-effect of CETP inhibitors is modulated through the combinatorial control of multiple interconnected pathways. Given that combinatorial control is a common phenomenon observed in many biological processes, our findings suggest that adverse drug effects might be minimized by fine-tuning multiple off-target interactions using single or multiple therapies. This work extends the scope of chemogenomics approaches and exemplifies the role that systems biology has in the future of drug discovery

    Hydroclimatic Contrasts Over Asian Monsoon Areas and Linkages to Tropical Pacific SSTs

    Get PDF
    Knowledge of spatial and temporal hydroclimatic differences is critical in understanding climatic mechanisms. Here we show striking hydroclimatic contrasts between northern and southern parts of the eastern margin of the Tibetan Plateau (ETP), and those between East Asian summer monsoon (EASM) and Indian summer monsoon (ISM) areas during the past ~2,000 years. During the Medieval Period, and the last 100 to 200 years, the southern ETP (S-ETP) area was generally dry (on average), while the northern ETP (N-ETP) area was wet. During the Little Ice Age (LIA), hydroclimate over S-ETP areas was wet, while that over N-ETP area was dry (on average). Such hydroclimatic contrasts can be broadly extended to ISM and EASM areas. We contend that changes in sea surface temperatures (SSTs) of the tropical Pacific Ocean could have played important roles in producing these hydroclimatic contrasts, by forcing the north-south movement of the Intertropical Convergence Zone (ITCZ) and intensification/slowdown of Walker circulation. The results of sensitivity experiments also support such a proposition

    AST1306, A Novel Irreversible Inhibitor of the Epidermal Growth Factor Receptor 1 and 2, Exhibits Antitumor Activity Both In Vitro and In Vivo

    Get PDF
    Despite the initial response to the reversible, ATP-competitive quinazoline inhibitors that target ErbB-family, such a subset of cancer patients almost invariably develop resistance. Recent studies have provided compelling evidence that irreversible ErbB inhibitors have the potential to override this resistance. Here, we found that AST1306, a novel anilino-quinazoline compound, inhibited the enzymatic activities of wild-type epidermal growth factor receptor (EGFR) and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. Importantly, AST1306 functions as an irreversible inhibitor, most likely through covalent interaction with Cys797 and Cys805 in the catalytic domains of EGFR and ErbB2, respectively. Further studies showed that AST1306 inactivated pathways downstream of these receptors and thereby inhibited the proliferation of a panel of cancer cell lines. Although the activities of EGFR and ErbB2 were similarly sensitive to AST1306, ErbB2-overexpressing cell lines consistently exhibited more sensitivity to AST1306 antiproliferative effects. Consistent with this, knockdown of ErbB2, but not EGFR, decreased the sensitivity of SK-OV-3 cells to AST1306. In vivo, AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/Nneu transgenic breast cancer mouse models, but weakly inhibited the growth of EGFR-overexpressing tumor xenografts. Tumor growth inhibition induced by a single dose of AST1306 in the SK-OV-3 xenograft model was accompanied by a rapid (within 2 h) and sustained (≥24 h) inhibition of both EGFR and ErbB2, consistent with an irreversible inhibition mechanism. Taken together, these results establish AST1306 as a selective, irreversible ErbB2 and EGFR inhibitor whose growth-inhibitory effects are more potent in ErbB2-overexpressing cells
    corecore