83 research outputs found

    Cell division in Bacillus subtilis : new insights from an old mutant

    Full text link
    University of Technology, Sydney. Faculty of Science.In bacteria, cell division is mediated by a macromolecular complex consisting of numerous proteins that act together to split the cell into two. The earliest event in this process is the formation of a polymeric ring, composed of the tubulin-like protein FtsZ, at the future site of division. This so-called ‘Z ring’ plays a pivotal role in the cell division mechanism, at least in part because it serves as a scaffold for the assembly of the division apparatus. Importantly, Z ring formation establishes both when and where the cell will divide, and is therefore subject to stringent spatiotemporal control. This thesis is concerned with the molecular mechanism of Z ring assembly and its regulation in the gram-positive model organism Bacillus subtilis. It involves the use of powerful fluorescence microscopy techniques in combination with molecular biological and genetic methods to examine the specific effects of a temperature sensitive FtsZ mutation on Z ring formation in vivo. The B. subtilis strain harbouring this mutation is known as tsl, while the mutant protein itself has been designated FtsZ(Tsl). Initial experiments examined the intracellular localisation pattern of the FtsZ(Tsl) protein in live cells growing at 49°C (the non-permissive temperature for tsl). This work revealed that while FtsZ(Tsl) is unable to form Z rings under non-permissive conditions, it retains the capacity to polymerise in vivo and instead assembles into short helical-like structures. Interestingly, these helices were observed to reorganise into fully functional Z rings following a shift from 49°C down to permissive temperatures. These and other observations suggest an exciting new model for Z ring assembly in wild-type bacterial cells, involving a regulated helix-to-ring remodelling of FtsZ polymers. The work also suggests that at non- permissive temperatures, the FtsZ(Tsl) protein is unable to complete the final stages of this remodelling process, and becomes trapped as a short helical intermediate of Z ring formation in vivo. To explore how the FtsZ helix-to-ring assembly mechanism is orchestrated within the cell, further experiments aimed to identify exactly why FtsZ(Tsl) is unable to complete this process at 49°C. During this work, it was discovered that in the presence of elevated levels of the FtsZ-binding protein ZapA, FtsZ(Tsl) regains the capacity to form functional Z rings at 49°C via the normal assembly pathway. The ZapA protein has previously been shown to promote Z ring assembly in the cell, and to stimulate the association of simple FtsZ polymers (protofilaments) into higher-order polymeric structures in vitro. These and other results suggest that FtsZ(Tsl) is specifically defective in its ability to support higher-order polymer association in vivo under non-permissive conditions. This enables FtsZ(Tsl) to polymerise into a helix, while preventing the helix from undergoing the structural changes required for it to reorganise into a stable ring. These findings have important implications regarding the molecular mechanism of the FtsZ helix-to-ring transition in wild-type cells. Other work presented in this thesis involved a genetic screen for extragenic suppressors of tsl thermosensitivity. Using insertional mutagenesis, a total of four unique genes were identified that rescue tsl to temperature resistance when inactivated. Given that the tsl strain is specifically defective in FtsZ function, and taking into account other findings in the literature, this strongly suggests that these genes act in some capacity to control FtsZ activity in vivo. Further characterisation of the gene products promises to uncover novel insights into the regulation of Z ring assembly in bacteria

    Coordinating bacterial cell division with nutrient availability: A role for glycolysis

    Full text link
    Cell division in bacteria is driven by a cytoskeletal ring structure, the Z ring, composed of polymers of the tubulin-like protein FtsZ. Z-ring formation must be tightly regulated to ensure faithful cell division, and several mechanisms that influence the positioning and timing of Z-ring assembly have been described. Another important but as yet poorly understood aspect of cell division regulation is the need to coordinate division with cell growth and nutrient availability. In this study, we demonstrated for the first time that cell division is intimately linked to central carbon metabolism in the model Gram-positive bacterium Bacillus subtilis. We showed that a deletion of the gene encoding pyruvate kinase (pyk), which produces pyruvate in the final reaction of glycolysis, rescues the assembly defect of a temperature-sensitive ftsZ mutant and has significant effects on Z-ring formation in wild-type B. subtilis cells. Addition of exogenous pyruvate restores normal division in the absence of the pyruvate kinase enzyme, implicating pyruvate as a key metabolite in the coordination of bacterial growth and division. Our results support a model in which pyruvate levels are coupled to Z-ring assembly via an enzyme that actually metabolizes pyruvate, the E1α subunit of pyruvate dehydrogenase. We have shown that this protein localizes over the nucleoid in a pyruvatedependent manner and may stimulate more efficient Z-ring formation at the cell center under nutrient-rich conditions, when cells must divide more frequently. © 2014 Monahan et al

    3D-SIM Super Resolution Microscopy Reveals a Bead-Like Arrangement for FtsZ and the Division Machinery: Implications for Triggering Cytokinesis

    Full text link
    FtsZ is a tubulin-like GTPase that is the major cytoskeletal protein in bacterial cell division. It polymerizes into a ring, called the Z ring, at the division site and acts as a scaffold to recruit other division proteins to this site as well as providing a contractile force for cytokinesis. To understand how FtsZ performs these functions, the in vivo architecture of the Z ring needs to be established, as well as how this structure constricts to enable cytokinesis. Conventional wide-field fluorescence microscopy depicts the Z ring as a continuous structure of uniform density. Here we use a form of super resolution microscopy, known as 3D-structured illumination microscopy (3D-SIM), to examine the architecture of the Z ring in cells of two Gram-positive organisms that have different cell shapes: the rod-shaped Bacillus subtilis and the coccoid Staphylococcus aureus. We show that in both organisms the Z ring is composed of a heterogeneous distribution of FtsZ. In addition, gaps of fluorescence were evident, which suggest that it is a discontinuous structure. Time-lapse studies using an advanced form of fast live 3D-SIM (Blaze) support a model of FtsZ localization within the Z ring that is dynamic and remains distributed in a heterogeneous manner. However, FtsZ dynamics alone do not trigger the constriction of the Z ring to allow cytokinesis. Lastly, we visualize other components of the divisome and show that they also adopt a bead-like localization pattern at the future division site. Our data lead us to propose that FtsZ guides the divisome to adopt a similar localization pattern to ensure Z ring constriction only proceeds following the assembly of a mature divisome. © 2012 Strauss et al

    Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM)

    Full text link
    © JoVE 2006-2014. All Rights Reserved. Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques – stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide

    High contiguity genome sequence of a multidrug-resistant hospital isolate of Enterobacter hormaechei

    Full text link
    © 2019 The Author(s). Background: Enterobacter hormaechei is an important emerging pathogen and a key member of the highly diverse Enterobacter cloacae complex. E. hormaechei strains can persist and spread in nosocomial environments, and often exhibit resistance to multiple clinically important antibiotics. However, the genomic regions that harbour resistance determinants are typically highly repetitive and impossible to resolve with standard short-read sequencing technologies. Results: Here we used both short- and long-read methods to sequence the genome of a multidrug-resistant hospital isolate (C15117), which we identified as E. hormaechei. Hybrid assembly generated a complete circular chromosome of 4,739,272 bp and a fully resolved plasmid of 339,920 bp containing several antibiotic resistance genes. The strain also harboured a 34,857 bp repeat encoding copper resistance, which was present in both the chromosome and plasmid. Long reads that unambiguously spanned this repeat were required to resolve the chromosome and plasmid into separate replicons. Conclusion: This study provides important insights into the evolution and potential spread of antimicrobial resistance in a nosocomial E. hormaechei strain. More broadly, it further exemplifies the power of long-read sequencing technologies, particularly the Oxford Nanopore platform, for the characterisation of bacteria with complex resistance loci and large repeat elements

    A genomic island integrated into recA of Vibrio cholerae contains a divergent recA and provides multi-pathway protection from DNA damage

    Get PDF
    © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd. Lateral gene transfer (LGT) has been crucial in the evolution of the cholera pathogen, Vibrio cholerae. The two major virulence factors are present on two different mobile genetic elements, a bacteriophage containing the cholera toxin genes and a genomic island (GI) containing the intestinal adhesin genes. Non-toxigenic V.cholerae in the aquatic environment are a major source of novel DNA that allows the pathogen to morph via LGT. In this study, we report a novel GI from a non-toxigenic V.cholerae strain containing multiple genes involved in DNA repair including the recombination repair gene recA that is 23% divergent from the indigenous recA and genes involved in the translesion synthesis pathway. This is the first report of a GI containing the critical gene recA and the first report of a GI that targets insertion into a specific site within recA. We show that possession of the island in Escherichia coli is protective against DNA damage induced by UV-irradiation and DNA targeting antibiotics. This study highlights the importance of genetic elements such as GIs in the evolution of V.cholerae and emphasizes the importance of environmental strains as a source of novel DNA that can influence the pathogenicity of toxigenic strains

    Whole-Genome Sequence Analysis of an Extensively Drug-Resistant Salmonella enterica Serovar Agona Isolate from an Australian Silver Gull (Chroicocephalus novaehollandiae) Reveals the Acquisition of Multidrug Resistance Plasmids.

    Full text link
    Although most of the approximately 94 million annual human cases of gastroenteritis due to Salmonella enterica resolve without medical intervention, antimicrobial therapy is recommended for patients with severe disease. Wild birds can be natural hosts of Salmonella that pose a threat to human health; however, multiple-drug-resistant serovars of S. enterica have rarely been described. In 2012, silver gull (Chroicocephalus novaehollandiae) chicks at a major breeding colony were shown to host Salmonella, most isolates of which were susceptible to antibiotics. However, multiple-drug-resistant (MDR) Escherichia coli with resistance to carbapenems, ceftazidime, and fluoroquinolones was reported from this breeding colony. In this paper, we describe a novel MDR Salmonella strain subsequently isolated from the same breeding colony. SG17-135, an isolate of S. enterica with phenotypic resistance to 12 individual antibiotics but only nine antibiotic classes including penicillins, cephalosporins, monobactams, macrolides, fluoroquinolones, aminoglycosides, dihydrofolate reductase inhibitors (trimethoprim), sulfonamides, and glycylcyclines was recovered from a gull chick in 2017. Whole-genome sequence (WGS) analysis of SG17-135 identified it as Salmonella enterica serovar Agona (S Agona) with a chromosome comprising 4,813,284 bp, an IncHI2 ST2 plasmid (pSG17-135-HI2) of 311,615 bp, and an IncX1 plasmid (pSG17-135-X) of 27,511 bp. pSG17-135-HI2 housed a complex resistance region comprising 16 antimicrobial resistance genes including blaCTX-M-55 The acquisition of MDR plasmids by S. enterica described here poses a serious threat to human health. Our study highlights the importance of taking a One Health approach to identify environmental reservoirs of drug-resistant pathogens and MDR plasmids.IMPORTANCE Defining environmental reservoirs hosting mobile genetic elements that shuttle critically important antibiotic resistance genes is key to understanding antimicrobial resistance (AMR) from a One Health perspective. Gulls frequent public amenities, parklands, and sewage and other waste disposal sites and carry drug-resistant Escherichia coli Here, we report on SG17-135, a strain of Salmonella enterica serovar Agona isolated from the cloaca of a silver gull chick nesting on an island in geographic proximity to the greater metropolitan area of Sydney, Australia. SG17-135 is closely related to pathogenic strains of S Agona, displays resistance to nine antimicrobial classes, and carries important virulence gene cargo. Most of the antibiotic resistance genes hosted by SG17-135 are clustered on a large IncHI2 plasmid and are flanked by copies of IS26 Wild birds represent an important link in the evolution and transmission of resistance plasmids, and an understanding of their behavior is needed to expose the interplay between clinical and environmental microbial communities

    Metagenomic Hi-C of a Healthy Human Fecal Microbiome Transplant Donor.

    Full text link
    We report the availability of a high-quality metagenomic Hi-C data set generated from a fecal sample taken from a healthy fecal microbiome transplant donor subject. We report on basic features of the data to evaluate their quality

    Self-organization of bacterial biofilms is facilitated by extracellular DNA

    Get PDF
    Twitching motility-mediated biofilm expansion is a complex, multicellular behavior that enables the active colonization of surfaces by many species of bacteria. In this study we have explored the emergence of intricate network patterns of interconnected trails that form in actively expanding biofilms of Pseudomonas aeruginosa. We have used high-resolution, phase-contrast time-lapse microscopy and developed sophisticated computer vision algorithms to track and analyze individual cell movements during expansion of P. aeruginosa biofilms. We have also used atomic force microscopy to examine the topography of the substrate underneath the expanding biofilm. Our analyses reveal that at the leading edge of the biofilm, highly coherent groups of bacteria migrate across the surface of the semisolid media and in doing so create furrows along which following cells preferentially migrate. This leads to the emergence of a network of trails that guide mass transit toward the leading edges of the biofilm. We have also determined that extracellular DNA (eDNA) facilitates efficient traffic flow throughout the furrow network by maintaining coherent cell alignments, thereby avoiding traffic jams and ensuring an efficient supply of cells to the migrating front. Our analyses reveal that eDNA also coordinates the movements of cells in the leading edge vanguard rafts and is required for the assembly of cells into the "bulldozer" aggregates that forge the interconnecting furrows. Our observations have revealed that large-scale self-organization of cells in actively expanding biofilms of P. aeruginosa occurs through construction of an intricate network of furrows that is facilitated by eDNA

    Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms

    Full text link
    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs
    • …
    corecore