2,248 research outputs found

    Disentangling interglacial sea level and global dynamic topography: Analysis of Madagascar

    Get PDF
    © 2019 Global inventories of stable sea-level markers for the peak of the last interglacial period, Marine Isotopic Stage (MIS) 5e, play a pivotal role in determining sea-level changes and in testing models of glacial isostatic adjustment. Here, we present surveying and radiometric dating results for emergent terraces from northern Madagascar, which is generally regarded as a stable equatorial site. Fossil coral specimens were dated using conventional and open-system corrected uranium series methods. Elevation of the upper (undated) terrace decreases from 33.8 m to 29.5 m over a distance of 35 km. An intermediate terrace has an average radiometric age of 130.7±13.2 ka (i.e. MIS 5e). Its elevation decreases from 9.3 m to 2.8 m over a distance of 80 km. The record of the lowest terrace is fragmentary and consists of beach rock containing rare corals with ages of 1.6–3.8 ka. The spatial gradient of the MIS 5e marker is inconsistent with glacio-isostatic adjustment calculations. Instead, we propose that variable elevations of this marker around Madagascar, and possibly throughout the Indian Ocean, at least partly reflect spatial patterns of dynamic topography generated by sub-plate mantle convection

    Exploring catalyst passivation with NMR relaxation

    Get PDF
    NMR relaxation has recently emerged as a novel and non-invasive tool for probing the surface dynamics of adsorbate molecules within liquid-saturated mesoporous catalysts. The elucidation of such dynamics is of particular relevance to the study and development of solvated green catalytic processes, such as the production of chemicals and fuels from bio-resources. In this paper we develop and implement a protocol using high field (1)H NMR spin-lattice relaxation as a probe of the reorientational dynamics of liquids imbibed within mesoporous oxide materials. The observed relaxation of liquids within mesoporous materials is highly sensitive to the adsorbed surface layer, giving insight into tumbling behaviour of spin-bearing chemical environments at the pore surface. As a prototypical example of relevance to liquid-phase catalytic systems, we examine the mobility of liquid methanol within a range of common catalyst supports. In particular, through the calculation and comparison of a suitable interaction parameter, we assess and quantify changes to these surface dynamics upon replacing surface hydroxyl groups with hydrophobic alkyl chains. Our results indicate that the molecular tumbling of adsorbed methanol is enhanced upon surface passivation due to the suppression of surface-adsorbate hydrogen bonding interactions, and tends towards that of the unrestricted bulk liquid. A complex analysis in which we account for the influence of changing pore structure and surface chemistry upon passivation is discussed. The results presented highlight the use of NMR spin-lattice relaxation measurements as a non-invasive probe of molecular dynamics at surfaces of interest to liquid-phase heterogeneous catalysis.N. R. would like to thank the Catalysis@Cambridge initiative for the studentship. C. D. would like to acknowledge the support of Wolfson College Cambridge. Mr Zlatko Saracevic is also gratefully acknowledged for performing the pore size measurements

    Andreev bound states in superconductor/ferromagnet point contact Andreev reflection spectra

    Get PDF
    As charge carriers traverse a single superconductor ferromagnet interface, they experience an additional spin-dependent phase angle that results in spin mixing and the formation of a bound state called the Andreev bound state. Here we explore whether point contact Andreev reflection can be used to detect the Andreev bound state and, within the limits of our experiment, we extract the resulting spin mixing angle. By examining spectra taken from L a 1.15 S r 1.85 M n 2 O 7 − Pb junctions, together with a compilation of literature data on highly spin polarized systems, we suggest that the existence of the Andreev bound state would resolve a number of long standing controversies in the literature of Andreev reflection, as well as defining a route to quantify the strength of spin mixing at superconductor-ferromagnet interfaces. Intriguingly, we find that for high transparency junctions, the spin mixing angle appears to take a relatively narrow range of values across all the samples studied. The ferromagnets we have chosen to study share a common property in terms of their spin arrangement, and our observations may point to the importance of this property in determining the spin mixing angle under these circumstances

    Spin-Pumping-Induced Inverse Spin Hall Effect in Nb/Ni80Fe20 Bilayers and its Strong Decay Across the Superconducting Transition Temperature

    Get PDF
    We quantify the spin Hall angle θSH and spin-diffusion length lsd of Nb from inverse spin Hall effect (ISHE) measurements in Nb/Ni80Fe20 bilayers under ferromagnetic resonance. By varying the Nb thickness tNb and comparing to a Ni80Fe20/Pt reference sample, room temperature values of θSH and lsd for Nb are estimated to be approximately -0.001 and 30 nm, respectively. We also investigate the ISHE as a function of temperature T for different tNb. Above the superconducting transition temperature Tc of Nb, a clear tNb-dependent T evolution of the ISHE is observed whereas below Tc, the ISHE voltage drops rapidly and is below the sensitivity of our measurement setup at a lower T. This suggests the strong decay of the quasiparticle (QP) charge-imbalance relaxation length across Tc, as supported by an additional investigation of the ISHE in a different sample geometry along with model calculation. Our finding suggests careful consideration should be made when developing superconductor spin Hall devices that intend to utilize QP-mediated spin-to-charge interconversion.This work is supported by EPSRC Programme Grant EP/N017242/1

    Exchange-field enhancement of superconducting spin pumping

    Get PDF
    A recent ferromagnetic resonance study [Jeon et al., Nat. Mater. 17, 499 (2018)] has reported that spin pumping into a singlet superconductor (Nb) can be greatly enhanced over the normal state when the Nb is coupled to a large spin-orbit-coupling (SOC) spin sink such as Pt. This behavior has been explained in terms of the generation of spin-polarized triplet supercurrents via SOC at the Nb/Pt interface, acting in conjunction with a nonlocally induced magnetic exchange field. Here we report the effect of adding a ferromagnet (Fe) to act as an internal source of an additional exchange field to the adjacent Pt spin sink. This dramatically enhances the spin pumping efficiency in the superconducting state compared with either Pt and Fe separately, demonstrating the critical role of the exchange field in generating superconducting spin currents in the Nb

    The effect of prolonged monocular occlusion on latent nystagmus in the treatment of amblyopia

    Get PDF
    We recorded eye movements in 5 patients with latent nystagmus (LN) before and after 2 days of occlusion of the better eye. The slow-phase speed of the nystagmus (SPS) was in general, before occlusion, lower when the better eye fixated but, after occlusion, lower when the worse eye fixated. However, the sum of SPS during right fixation and SPS during left fixation remained constant. Oscillopsia complaints gradually disappeared during the period of occlusion. These findings indicate that the difference between the SPS during fixation with the right eye and the SPS during fixation with the left eye in LN patients is caused by a compensatory drift that decreases LN during fixation with the better eye but increases LN during fixation with the worse eye. During occlusion, this compensatory drift changes its direction and magnitude slowly over days. Hence, occlusion of the better eye in children with amblyopia and LN should be prescribed only in days per week, not in hours per day

    Simulating stable carbon isotopes in the ocean component of the FAMOUS general circulation model with MOSES1 (XOAVI)

    Get PDF
    Ocean circulation and the marine carbon cycle can be indirectly inferred from stable and radiogenic carbon isotope ratios (δ13C and Δ14C, respectively), measured directly in the water column, or recorded in geological archives such as sedimentary microfossils and corals. However, interpreting these records is non-trivial because they reflect a complex interplay between physical and biogeochemical processes. By directly simulating multiple isotopic tracer fields within numerical models, we can improve our understanding of the processes that control large-scale isotope distributions and interpolate the spatiotemporal gaps in both modern and palaeo datasets. We have added the stable isotope 13C to the ocean component of the FAMOUS coupled atmosphere–ocean general circulation model, which is a valuable tool for simulating complex feedbacks between different Earth system processes on decadal to multi-millennial timescales. We tested three different biological fractionation parameterisations to account for the uncertainty associated with equilibrium fractionation during photosynthesis and used sensitivity experiments to quantify the effects of fractionation during air–sea gas exchange and primary productivity on the simulated δ13CDIC distributions. Following a 10 000-year pre-industrial spin-up, we simulated the Suess effect (the isotopic imprint of anthropogenic fossil fuel burning) to assess the performance of the model in replicating modern observations. Our implementation captures the large-scale structure and range of δ13CDIC observations in the surface ocean, but the simulated values are too high at all depths, which we infer is due to biases in the biological pump. In the first instance, the new 13C tracer will therefore be useful for recalibrating both the physical and biogeochemical components of FAMOUS

    Pre-Release Consumption of Methyl Eugenol Increases the Mating Competitiveness of Sterile Males of the Oriental Fruit Fly, Bactrocera dorsalis, in Large Field Enclosures

    Get PDF
    The sterile insect technique may be implemented to control populations of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), when environmental concerns preclude widespread use of chemical attractants or toxicants. The goal of the present study was to evaluate whether the mating competitiveness of sterile B. dorsalis males could be increased via pre-release feeding on methyl eugenol. Males of the oriental fruit fly are strongly attracted to this plant-borne compound, which they ingest and use in the synthesis of the sex pheromone. Previous studies conducted in the laboratory and small field-cages have shown that males given methyl eugenol produce a more attractive pheromone for females and have a higher mating success rate than males denied methyl eugenol. Here, levels of egg sterility were compared following the release of wild-like flies and either methyl eugenol-fed (treated) or methyl eugenol-deprived (control) sterile males in large field enclosures at four over flooding ratios ranging from 5:1 to 60:1 (sterile: wild-like males). Treated sterile males were fed methyl eugenol for 1–4 h (depending on the over flooding ratio tested) 3 d prior to release. Eggs were dissected from introduced fruits (apples), incubated in the laboratory, and scored for hatch rate. The effect of methyl eugenol was most pronounced at lower over flooding ratios. At the 5:1 and 10:1 over flooding ratios, the level of egg sterility observed for treated, sterile males was significantly greater than that observed for control, sterile males. In addition, the incidence of egg sterility reported for treated sterile males at these lower over flooding ratios was similar to that noted for treated or control sterile males at the 30:1 or 60:1 over flooding ratios. This latter result, in particular, suggests that pre-release feeding on methyl eugenol allows for a reduction in the number of sterile flies that are produced and released, thus increasing the cost-effectiveness of the sterile insect technique

    Spin-orbit coupling suppression and singlet-state blocking of spin-triplet Cooper pairs

    Get PDF
    An inhomogeneous magnetic exchange field at a superconductor/ferromagnet interface converts spin-singlet Cooper pairs to a spin-polarized triplet state. Although the decay envelope of triplet pairs within ferromagnetic materials is well studied, little is known about their decay in nonmagnetic metals and superconductors and, in particular, in the presence of spin-orbit coupling (SOC). Here, we investigate devices in which singlet and triplet supercurrents propagate into the s-wave superconductor Nb. In the normal state of Nb, triplet supercurrents decay over a distance of 5 nm, which is an order of magnitude smaller than the decay of spin-singlet pairs due to the SOC. In the superconducting state of Nb, triplet supercurrents are not able to couple with the singlet wave function and are thus blocked by the absence of available equilibrium states in the singlet gap. The results offer insight into the dynamics between s-wave singlet and s-wave triplet states

    Controlling spin pumping into superconducting Nb by proximity-induced spin-triplet Cooper pairs

    Get PDF
    Proximity-induced long-range spin-triplet supercurrents, important for the field of superconducting spintronics, are generated in superconducting/ferromagnetic heterostructures when interfacial magnetic inhomogeneities responsible for spin mixing and spin flip scattering are present. The multilayer stack Nb/Cr/Fe/Cr/Nb has been shown to support such currents when fabricated into Josephson junction devices. However, creating pure spin currents controllably in superconductors outside of the Josephson junction architecture is a bottleneck to progress. Recently, ferromagnetic resonance was proposed as a possible direction, the signature of pure supercurrent creation being an enhancement of the Gilbert damping below the superconducting critical temperature, but the necessary conditions are still poorly established. Here, we demonstrate that pumping pure spin currents into a superconductor in the presence of an external magnetic field is only possible when conditions supporting proximity-induced spin-triplet effects are satisfied. Our study is an important step forward for pure spin supercurrent creation, considerably advancing the field of superconducting spintronics
    • …
    corecore