32 research outputs found

    Nestedness of Ectoparasite-Vertebrate Host Networks

    Get PDF
    Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks—including three derived from molecular bloodmeal analysis of mosquito feeding patterns—using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same “generalized” hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations) can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks

    The stability of multitrophic communities under habitat loss

    Get PDF
    Habitat loss (HL) affects species and their interactions, ultimately altering community dynamics. Yet, a challenge for community ecology is to understand how communities with multiple interaction types—hybrid communities—respond to HL prior to species extinctions. To this end, we develop a model to investigate the response of hybrid terrestrial communities to two types of HL: random and contiguous. Our model reveals changes in stability—temporal variability in population abundances—that are dependent on the spatial configuration of HL. Our findings highlight that habitat area determines the variability of populations via changes in the distribution of species interaction strengths. The divergent responses of communities to random and contiguous HL result from different constraints imposed on individuals’ mobility, impacting diversity and network structure in the random case, and destabilising communities by increasing interaction strength in the contiguous case. Analysis of intermediate HL suggests a gradual transition between the two extreme cases

    Rigorous conditions for food-web intervality in high-dimensional trophic niche spaces

    Get PDF
    Food webs represent trophic (feeding) interactions in ecosystems. Since the late 1970s, it has been recognized that food-webs have a surprisingly close relationship to interval graphs. One interpretation of food-web intervality is that trophic niche space is low-dimensional, meaning that the trophic character of a species can be expressed by a single or at most a few quantitative traits. In a companion paper we demonstrated, by simulating a minimal food-web model, that food webs are also expected to be interval when niche-space is high-dimensional. Here we characterize the fundamental mechanisms underlying this phenomenon by proving a set of rigorous conditions for food-web intervality in high-dimensional niche spaces. Our results apply to a large class of food-web models, including the special case previously studied numerically
    corecore