1,194 research outputs found
Worthwhile work? Childcare, feminist ethics and cooperative research practices
Interdisciplinary research collaborations are often encouraged within higher education while the practicalities of such collaborations are glossed over. This project specifically addresses the praxis of research collaborations, exploring how feminist academics within different countries and disciplines came together to explore their mutual concern about the perceived worth and well-being of early childhood practitioners. Engaging in a formal methodological dialogue over eight months, seven academics discussed, analysed and dissected their different investments in research methods and intents, with the aim of agreeing to a common methodological framework. Unexpectedly, what emerged was not a product, but a process. We argue that this process offers much to those seeking deep collaboration in and through shared research. Building on a collective research interest, we found ourselves in a process of becoming, germinating the seed of a transnational research cooperative, based on trust and mutual respect, rather than the arid methodological contract originally envisioned
Coherent electronic transfer in quantum dot systems using adiabatic passage
We describe a scheme for using an all-electrical, rapid, adiabatic population
transfer between two spatially separated dots in a triple-quantum dot system.
The electron spends no time in the middle dot and does not change its energy
during the transfer process. Although a coherent population transfer method,
this scheme may well prove useful in incoherent electronic computation (for
example quantum-dot cellular automata) where it may provide a coherent
advantage to an otherwise incoherent device. It can also be thought of as a
limiting case of type II quantum computing, where sufficient coherence exists
for a single gate operation, but not for the preservation of superpositions
after the operation. We extend our analysis to the case of many intervening
dots and address the issue of transporting quantum information through a
multi-dot system.Comment: Replaced with (approximately) the published versio
Quantum dynamics, dissipation, and asymmetry effects in quantum dot arrays
We study the role of dissipation and structural defects on the time evolution
of quantum dot arrays with mobile charges under external driving fields. These
structures, proposed as quantum dot cellular automata, exhibit interesting
quantum dynamics which we describe in terms of equations of motion for the
density matrix. Using an open system approach, we study the role of asymmetries
and the microscopic electron-phonon interaction on the general dynamical
behavior of the charge distribution (polarization) of such systems. We find
that the system response to the driving field is improved at low temperatures
(and/or weak phonon coupling), before deteriorating as temperature and
asymmetry increase. In addition to the study of the time evolution of
polarization, we explore the linear entropy of the system in order to gain
further insights into the competition between coherent evolution and
dissipative processes.Comment: 11pages,9 figures(eps), submitted to PR
Performance measures and intra-firm spillovers: theory and evidence
We revisit the question of how performance measures are used to evaluate business unit managers in response to intra-firm spillovers. Specifically, we are interested in variation in the relative incentive weightings of aggregated “above-level” measures (e.g., firm-wide net income), “own-level” business unit measures (e.g., business unit profit), and specific “below-level” measures (e.g., R&D expenses) in response to spillover arising from either the focal unit’s effect on other business units or the other units’ effect on the focal unit. Our theory highlights complementarity between above- and below-level measures and the existence of an interaction between the two directions of spillovers. Based on a survey of 122 business unit managers, we report evidence consistent with an interaction effect and with complementarity between above- and below-level measures. In particular, we show that firms increase the weighting on both of above- and below-levels measures when they are coping simultaneously with high levels of spillovers on other units and spillovers from other units
Bound States and Threshold Resonances in Quantum Wires with Circular Bends
We study the solutions to the wave equation in a two-dimensional tube of unit
width comprised of two straight regions connected by a region of constant
curvature. We introduce a numerical method which permits high accuracy at high
curvature. We determine the bound state energies as well as the transmission
and reflection matrices, and and focus on the nature of
the resonances which occur in the vicinity of channel thresholds. We explore
the dependence of these solutions on the curvature of the tube and angle of the
bend and discuss several limiting cases where our numerical results confirm
analytic predictions.Comment: 24 pages, revtex file, one style file and 17 PostScript figures
include
Emergence of a confined state in a weakly bent wire
In this paper we use a simple straightforward technique to investigate the
emergence of a bound state in a weakly bent wire. We show that the bend behaves
like an infinitely shallow potential well, and in the limit of small bending
angle and low energy the bend can be presented by a simple 1D delta function
potential.Comment: 4 pages, 3 Postscript figures (uses Revtex); added references and
rewritte
Entangled Electronic States in Multiple Quantum-Dot Systems
We present an analytically solvable model of colinear, two-dimensional
quantum dots, each containing two electrons. Inter-dot coupling via the
electron-electron interaction gives rise to sets of entangled ground states.
These ground states have crystal-like inter-plane correlations and arise
discontinously with increasing magnetic field. Their ranges and stabilities are
found to depend on dot size ratios, and to increase with .Comment: To appear in Physical Review B (in press). RevTeX file. Figures
available from [email protected]
Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics
We review our recent efforts in building atom-scale quantum-dot cellular
automata circuits on a silicon surface. Our building block consists of silicon
dangling bond on a H-Si(001) surface, which has been shown to act as a quantum
dot. First the fabrication, experimental imaging, and charging character of the
dangling bond are discussed. We then show how precise assemblies of such dots
can be created to form artificial molecules. Such complex structures can be
used as systems with custom optical properties, circuit elements for
quantum-dot cellular automata, and quantum computing. Considerations on
macro-to-atom connections are discussed.Comment: 28 pages, 19 figure
Making Classical Ground State Spin Computing Fault-Tolerant
We examine a model of classical deterministic computing in which the ground
state of the classical system is a spatial history of the computation. This
model is relevant to quantum dot cellular automata as well as to recent
universal adiabatic quantum computing constructions. In its most primitive
form, systems constructed in this model cannot compute in an error free manner
when working at non-zero temperature. However, by exploiting a mapping between
the partition function for this model and probabilistic classical circuits we
are able to show that it is possible to make this model effectively error free.
We achieve this by using techniques in fault-tolerant classical computing and
the result is that the system can compute effectively error free if the
temperature is below a critical temperature. We further link this model to
computational complexity and show that a certain problem concerning finite
temperature classical spin systems is complete for the complexity class
Merlin-Arthur. This provides an interesting connection between the physical
behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur
- …