6,564 research outputs found

    Self-gravitating spheres of anisotropic fluid in geodesic flow

    Full text link
    The fluid models mentioned in the title are classified. All characteristics of the fluid are expressed through a master potential, satisfying an ordinary second order differential equation. Different constraints are imposed on this core of relations, finding new solutions and deriving the classical results for perfect fluids and dust as particular cases. Many uncharged and charged anisotropic solutions, all conformally flat and some uniform density solutions are found. A number of solutions with linear equation among the two pressures are derived, including the case of vanishing tangential pressure.Comment: 21 page

    Hole-LO phonon interaction in InAs/GaAs quantum dots

    Get PDF
    We investigate the valence intraband transitions in p-doped self-assembled InAs quantum dots using far-infrared magneto-optical technique with polarized radiation. We show that a purely electronic model is unable to account for the experimental data. We calculate the coupling between the mixed hole LO-phonon states using the Fr\"ohlich Hamiltonian, from which we determine the polaron states as well as the energies and oscillator strengths of the valence intraband transitions. The good agreement between the experiments and calculations provides strong evidence for the existence of hole-polarons and demonstrates that the intraband magneto-optical transitions occur between polaron states

    Nonadiabatic charged spherical evolution in the postquasistatic approximation

    Full text link
    We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of dissipative and electrically charged distributions in General Relativity. We evolve nonadiabatic distributions assuming an equation of state that accounts for the anisotropy induced by the electric charge. Dissipation is described by streaming out or diffusion approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-Nordstr\"om exterior solution. Two models are considered: i) a Schwarzschild-like shell in the diffusion limit; ii) a Schwarzschild-like interior in the free streaming limit. These toy models tell us something about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic time. The streaming out radiation provides a more efficient mechanism for emission of energy, redistributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer hydrodynamic time scale.Comment: 11 pages, 16 Figures. Accepted for publication in Phys Rev

    Interpretations of the Accelerating Universe

    Full text link
    It is generally argued that the present cosmological observations support the accelerating models of the universe, as driven by the cosmological constant or `dark energy'. We argue here that an alternative model of the universe is possible which explains the current observations of the universe. We demonstrate this with a reinterpretation of the magnitude-redshift relation for Type Ia supernovae, since this was the test that gave a spurt to the current trend in favour of the cosmological constant.Comment: 12 pages including 2 figures, minor revision, references added, a paragraph on the interpretation of the CMB anisotropy in the QSSC added in conclusion, general results unchanged. To appear in the October 2002 issue of the "Publications of the Astronmical Society of the Pacific

    Physical properties of thermoelectric zinc antimonide using first-principles calculations

    Full text link
    We report first principles calculations of the structural, electronic, elastic and vibrational properties of the semiconducting orthorhombic ZnSb compound. We study also the intrinsic point defects in order to eventually improve the thermoelectric properties of this already very promising thermoelectric material. Concerning the electronic properties, in addition to the band structure, we show that the Zn (Sb) crystallographically equivalent atoms are not exactly equivalent from the electronic point of view. Lattice dynamics, elastic and thermodynamic properties are found to be in good agreement with experiments and they confirm the non equivalency of the zinc and antimony atoms from the vibrational point of view. The calculated elastic properties show a relatively weak anisotropy and the hardest direction is the y direction. We observe the presence of low energy modes involving both Zn and Sb atoms at about 5-6 meV, similarly to what has been found in Zn4Sb3 and we suggest that the interactions of these modes with acoustic phonons could explain the relatively low thermal conductivity of ZnSb. Zinc vacancies are the most stable defects and this explains the intrinsic p-type conductivity of ZnSb.Comment: 33 pages, 8 figure

    Genericity aspects in gravitational collapse to black holes and naked singularities

    Get PDF
    We investigate here the genericity and stability aspects for naked singularities and black holes that arise as the final states for a complete gravitational collapse of a spherical massive matter cloud. The form of the matter considered is a general Type I matter field, which includes most of the physically reasonable matter fields such as dust, perfect fluids and such other physically interesting forms of matter widely used in gravitation theory. We first study here in some detail the effects of small pressure perturbations in an otherwise pressure-free collapse scenario, and examine how a collapse evolution that was going to the black hole endstate would be modified and go to a naked singularity, once small pressures are introduced in the initial data. This allows us to understand the distribution of black holes and naked singularities in the initial data space. Collapse is examined in terms of the evolutions allowed by Einstein equations, under suitable physical conditions and as evolving from a regular initial data. We then show that both black holes and naked singularities are generic outcomes of a complete collapse, when genericity is defined in a suitable sense in an appropriate space.Comment: 24 pages, 6 figures, some changes in text and figures to match the version accepted for publication by IJMP

    Genetic variations within human gained enhancer elements affect human brain sulcal morphology.

    Get PDF
    The expansion of the cerebral cortex is one of the most distinctive changes in the evolution of the human brain. Cortical expansion and related increases in cortical folding may have contributed to emergence of our capacities for high-order cognitive abilities. Molecular analysis of humans, archaic hominins, and non-human primates has allowed identification of chromosomal regions showing evolutionary changes at different points of our phylogenetic history. In this study, we assessed the contributions of genomic annotations spanning 30 million years to human sulcal morphology measured via MRI in more than 18,000 participants from the UK Biobank. We found that variation within brain-expressed human gained enhancers, regulatory genetic elements that emerged since our last common ancestor with Old World monkeys, explained more trait heritability than expected for the left and right calloso-marginal posterior fissures and the right central sulcus. Intriguingly, these are sulci that have been previously linked to the evolution of locomotion in primates and later on bipedalism in our hominin ancestors
    corecore