8,778 research outputs found
Specific heat amplitude ratios for anisotropic Lifshitz critical behaviors
We determine the specific heat amplitude ratio near a -axial Lifshitz
point and show its universal character. Using a recent renormalization group
picture along with new field-theoretical -expansion techniques,
we established this amplitude ratio at one-loop order. We estimate the
numerical value of this amplitude ratio for and . The result is in
very good agreement with its experimental measurement on the magnetic material
. It is shown that in the limit it trivially reduces to the
Ising-like amplitude ratio.Comment: 8 pages, RevTex, accepted as a Brief Report in Physical Review
A new picture of the Lifshitz critical behavior
New field theoretic renormalization group methods are developed to describe
in a unified fashion the critical exponents of an m-fold Lifshitz point at the
two-loop order in the anisotropic (m not equal to d) and isotropic (m=d close
to 8) situations. The general theory is illustrated for the N-vector phi^4
model describing a d-dimensional system. A new regularization and
renormalization procedure is presented for both types of Lifshitz behavior. The
anisotropic cases are formulated with two independent renormalization group
transformations. The description of the isotropic behavior requires only one
type of renormalization group transformation. We point out the conceptual
advantages implicit in this picture and show how this framework is related to
other previous renormalization group treatments for the Lifshitz problem. The
Feynman diagrams of arbitrary loop-order can be performed analytically provided
these integrals are considered to be homogeneous functions of the external
momenta scales. The anisotropic universality class (N,d,m) reduces easily to
the Ising-like (N,d) when m=0. We show that the isotropic universality class
(N,m) when m is close to 8 cannot be obtained from the anisotropic one in the
limit d --> m near 8. The exponents for the uniaxial case d=3, N=m=1 are in
good agreement with recent Monte Carlo simulations for the ANNNI model.Comment: 48 pages, no figures, two typos fixe
Avaliação de duas espécies de fungos entomopatogênicos para o controle de Hedypathes betulinus (KLUG, 1825) (Coleoptera: Cerambycidae), em laboratório.
A broca-da- erva-mate Hedypathes betulinus (Klug), é a principal praga da cultura da erva-mate e para o seu controle, estudou-se em laboratório, a utilização de fungos entomopatogênicos. Foi avaliada a infectividade dos fungos Beauveria bassiana (Bals) Vuill. e Paecilomyces sp. Bainier, em adultos de H. betulinus, em laboratório. Os fungos foram aplicados na concentração de 107esporos/ml, em galhos de erva-mate ofertados como alimento ao inseto adulto. Verificou-se que B. bassiana (CG 716) foi mais infectivo que Paecilomyces sp., apresentando mortalidade de 97,5 e 37,5%, respectivamente. Foi avaliada a eficiência da cepa B. bassiana CG 716 nas concentrações de 106 e 107esporos/ml e verificou-se que não ocorreu diferença significativa entre as concentrações, obtendo-se mortalidade de 100 e 96,6%, na concentração de 106 e 107esporos/ml, respectivamente.Seção: Manejo e Extensão. Feira do Agronegócio da Erva-mate, 1., 2003, Chapecó. Integrar para promover o agronegócio da erva-mate
Método Walkley Black na determinação da matéria orgânica em solos contaminados por chorume.
Made available in DSpace on 2011-04-09T15:48:28Z (GMT). No. of bitstreams: 1
v8n1a16.pdf: 704746 bytes, checksum: b5a5d81fc8eeacd61fcb5b0a9997f665 (MD5)
Previous issue date: 2004-10-2
Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators
We discuss several adaptive mesh-refinement strategies based on (h − h/2)-error estimation. This class of adaptivemethods is particularly popular in practise since it is problem independent and requires virtually no implementational overhead. We prove that, under the saturation assumption, these adaptive algorithms are convergent. Our framework applies not only to finite element methods, but also yields a first convergence proof for adaptive boundary element schemes. For a finite element model problem, we extend the proposed adaptive scheme and prove convergence even if the saturation assumption fails to hold in general
Seleção de isolados de Verticillium lecanii (Zimm.) Viégas para o controle do pulgão do pínus Cinara atlantica (Hemiptera: aphididae).
Organizado por Patricia Póvoa de Mattos, Celso Garcia Auer, Rejane Stumpf Sberze, Katia Regina Pichelli e Paulo César Botosso
Avaliação da produção de Verticillium lecanii (Zimm.) Viégas em diferentes meios de cultura sólidos.
Organizado por Patricia Póvoa de Mattos, Celso Garcia Auer, Rejane Stumpf Sberze, Katia Regina Pichelli e Paulo César Botosso
- …