8,034 research outputs found

    Modélisation de l'évolution thermique saisonnière du lac du Bourget

    Get PDF
    Le lac du Bourget, l'un des principaux lacs alpins situé en France, a fait l'objet en 1981 d'importants travaux d'aménagement en vue de ta restauration de la qualité de ses eaux. Une campagne de mesure portant sur les années 1988-89 a été mise en place afin de faire le point sur l'évolution du lac depuis la fin des travaux.Un modèle thermique et biogéochimique (phosphore, oxygène, azote) sera utilisé pour synthétiser les connaissances, prévoir l'évolution de la qualité des eaux du lac ainsi que l'influence d'éventuels aménagements complémentaires. Les résultats présentés ici concernent la première étape du projet d'études, la modélisation thermique du lac du Bourget.Le modèle utilisé est un modèle unidimensionnel, vertical, basé sur l'équation d'advection-diffusion.L'expression des coefficients de dispersion selon la profondeur reprend celle d'un modèle du lac Léman (Tassin, 1986). Les équations utilisées distinguent l'épilimnion, le métalimnion et l'hypolimnion.Les résultats présentés montrent que le modèle décrit de façon satisfaisante le cycle thermique annuel et l'évolution inter-annuelle des températures dans le lac du Bourget.Les profils et les valeurs des coefficients de dispersion calculés sur le lac du Bourget sont proches de ceux obtenus sur d'autres lacs à partir de mesures fines de température ou de concentrations d'isotopes naturels.Les coefficients de dispersion obtenus pourront donc être utilisés dans la modélisation des substances dissoutes dans le lac.In 1981, important works including the diversion of the main sewers entering Lake Bourget (one of the largest French alpine lakes) were undertaken in order to restore acceptable water quality standards. A detailed water quality survey will be performed in 1988-89 to complete the data base which already covers ten years. It should help in quantifying the evolution of the lake since the 1981 restoration works. The following activities will be undertaken as part of the survey : measurements within the water column, a study of the bottom sediments, the setting-up of sediment traps and the coupling of Landsat satellite images with measurements performed at some stations at the lake surface. A thermal and biogeochemical (phosphorus, oxygen, nitrogen) model will be used to summarise the information available and to forecast the evolution of water quality and the effect of other restoration measures. This paper reports on the first part of the study : the thermal modelling of Lake Bourget. A one-dimensional, vertical model based on the advection-diffusion equation is used. This equation is solved using a finite difference, semi-implicit method. The resolution grid has 145 layers (1 meter high) and the time step is 3 hours.The heat fluxes at the air-water interface are computed with the three-hourly meteorological data collected at the Chambéry airport station, at the south end of the lake. The formulas are empirical and well established in the literature.The expression for the eddy diffusion coefficients is based on a model of the lake of Geneva (Tassin, 1986). Different equations are used for the epilimnion, metalimnion and hypolimnion. In the epilimnion, the eddy diffusion coefficient expresses, by the Richardson gradients number, the interaction between the shear stress of the wind and the water column stability. It depends on the value of the eddy diffusion in neutral conditions and on a stability function which includes the Richardson number. The vertical profile of the horizontal number. The vertical profile of the horizontal currents is computed following Ekman (1905) and Simons (1981) and is approximated by a gradient which decays exponentially.In the metalimnion and the hypolimnion, the water layer stability is characterised by the Brünt-Väisälä frequency. In the hypolimnion, the eddy diffusion coefficient includes a corrective term, which is a function of depth; this term serves to reduce the dispersion near the bottom of the lake.The thermal model also includes the mixing of the first layers by waves, the vertical advective transport induced by rivers inflows into the lake and by surface water withdrawal, as well as the thermal convection induced by local instabilities of the water column.The eight parameters occurring in the heat flux equations and the eddy diffusion coefficients were estimated using data from 1981. The model has been validated over an 8 years period 1976-1983).Results of the model agree with the observed seasonal and long-term evolutions of temperature in Lake Bourget. The main characteristics of the annual cycle are reproduced : set-up of the thermocline in spring, depth of the epilimnion, thermocline and metalimnion, value of the temperature gradient in the metalimnion, deepening of the thermocline in fall and winter overturn. Significant differences between observed and simulated temperatures occur in the metalimnion and they may be partially explained by internal waves which are dominant features at this level during summer stratification. This kind of mechanism cannot be accounted for in a one-dimensional vertical model.Profiles and values of eddy diffusion coefficients calculated for Lake Bourget show a good agreement with those obtained in other large takes from measurements of temperature or natural isotopes concentrations.In general, the thermal model gives a good account of heat transport mechanisms in Lake Bourget. Accordingly, it provides acceptable dispersion coefficients which can be used to model the distribution of dissolved species in the lake

    A Nuclear Physics Program at the ATLAS Experiment at the CERN Large Hadron Collider

    Full text link
    The ATLAS collaboration has significant interest in the physics of ultra-relativistic heavy ion collisions. We submitted a Letter of Intent to the United States Department of Energy in March 2002. The following document is a slightly modified version of that LOI. More details are available at: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/SM/ionsComment: Letter of Intent submitted to the United States Department of Energy Nuclear Physics Division in March 2002 (revised version

    Concentração e época de aplicação de AminoetoxiVinilGlicine (AVG) na maturação de macieiras 'Fuji Suprema'.

    Get PDF
    bitstream/item/45481/1/ADM11003.pd

    Critical exponents from parallel plate geometries subject to periodic and antiperiodic boundary conditions

    Full text link
    We introduce a renormalized 1PI vertex part scalar field theory setting in momentum space to computing the critical exponents ν\nu and η\eta, at least at two-loop order, for a layered parallel plate geometry separated by a distance L, with periodic as well as antiperiodic boundary conditions on the plates. We utilize massive and massless fields in order to extract the exponents in independent ultraviolet and infrared scaling analysis, respectively, which are required in a complete description of the scaling regions for finite size systems. We prove that fixed points and other critical amounts either in the ultraviolet or in the infrared regime dependent on the plates boundary condition are a general feature of normalization conditions. We introduce a new description of typical crossover regimes occurring in finite size systems. Avoiding these crossovers, the three regions of finite size scaling present for each of these boundary conditions are shown to be indistinguishable in the results of the exponents in periodic and antiperiodic conditions, which coincide with those from the (bulk) infinite system.Comment: Modified introduction and some references; new crossover regimes discussion improved; Appendixes expanded. 48 pages, no figure

    Ganho de fitomassa e acúmulo de N atmosférico em plantas de feijão-caupi inoculadas com rizóbio.

    Get PDF
    Este trabalho teve como objetivo verificar o ganho de matéria seca e o acúmulo de N na parte aérea de plantas de feijão-caupi [Vigna unguiculata (L.) Walp] inoculadas com estirpes de rizóbio específicas
    corecore