645 research outputs found

    Consensus report on the future of animal-free systemic toxicity testing

    Full text link

    Metabolic Depletion of Atp by Fructose Inversely Controls Cd95- and Tumor Necrosis Factor Receptor 1–Mediated Hepatic Apoptosis

    Get PDF
    Hepatocyte apoptosis is crucial in several forms of liver disease. Here, we examined in different models of murine liver injury whether and how metabolically induced alterations of hepatocyte ATP levels control receptor-mediated apoptosis. ATP was depleted either in primary hepatocytes or in vivo by various phosphate-trapping carbohydrates such as fructose. After the activation of the tumor necrosis factor (TNF) receptor or CD95, the extent of hepatocyte apoptosis and liver damage was quantified. TNF-induced cell death was completely blocked in ATP-depleted hepatocyte cultures, whereas apoptosis mediated by CD95 was enhanced. Similarly, acute TNF-induced liver injury in mice was entirely inhibited by ATP depletion with ketohexoses, whereas CD95-mediated hepatotoxicity was enhanced. ATP depletion prevented mitochondrial cytochrome c release, loss of mitochondrial membrane potential, activation of type II caspases, DNA fragmentation, and cell lysis after exposure to TNF. The extent of apoptosis inhibition correlated with the severity of ATP depletion, and TNF-induced apoptosis was restored when ATP was repleted by increasing the extracellular phosphate concentration. Our study demonstrates that TNF-induced hepatic apoptosis can be selectively and reversibly blocked upstream of mitochondrial dysfunction by ketohexose-mediated ATP depletion

    Markers of Murine Embryonic and Neural Stem Cells, Neurons and Astrocytes: Reference Points for Developmental Neurotoxicity Testing

    Get PDF
    Developmental neurotoxicity (DNT) is a serious concern for environmental chemicals, as well as for food and drug constituents. Animal-based DNT models have relatively low sensitivity, and they are limited by high work-load, cost and animal ethics. Murine embryonic stem cells (mESC) recapitulate several critical processes involved in the development of the nervous system if they are induced to differentiate into neural cells. They therefore represent an alternative toxicological model to predict human hazard. In this review, we discuss how mESC can be used for DNT assays. We have compiled a list of mRNA markers that define undifferentiated mESC (n = 42); neural stem cells (n = 73), astrocytes (n = 25) and the pattern of different neuronal and non-neuronal cell types generated (n = 57). We propose that transcriptional profiling can be used as a sensitive endpoint in toxicity assays to distinguish neural differentiation states during normal and disturbed development. Importantly, we believe that it can be scaled up to relatively high throughput whilst still providing rich information on disturbances affecting small cell subpopulations. Moreover, this approach can provide insight into underlying mechanisms and pathways of toxicity. We broadly discuss the methodological basis of marker lists and DNT assay design. The discussion is put in the context of a new generation of alternative assays (embryonic stem cell based DNT testing = ESDNT V2.0), that may later include human induced pluripotent stem cells, and that are not designed for 1:1 replacement of animal experiments, but are rather intended to improve human risk assessment by using independent scientific principles.JRC.I.2-Validation of Alternative Method

    The Biological and Ethical Basis of the Use of Human Embryonic Stem Cells for In Vitro Test Systems or Cell Therapy

    Get PDF
    Human embryonic stem cells (hESC) are now routinely cultured in many laboratories, and differentiation protocols are available to generate a large variety of cell types. In an ongoing ethical debate opinions of different groups are based on varying sets of religious, historical, cultural and scientific arguments as well as on widely differing levels of general information. We here give an overview of the biological background for non-specialists, and address all issues of the current stem cell debate that are of concern in different cultures and states. Thirty-five chapters address embryo definition, potential killing and the beginning of human life, in addition to matters of human dignity, patenting, commercialisation, and potential alternatives for the future, such as induced pluripotent (reprogrammed) stem cells. All arguments are compiled in a synopsis, and compromise solutions, e.g. for the definition of the beginning of personhood and for assigning dignity to embryos, are suggested. Until recently, the major application of hESC was thought to be transplantation of cells derived from hESC for therapeutic use. We discuss here that the most likely immediate uses will rather be in vitro test systems and disease models. Major and minor pharmaceutical companies have entered this field, and the European Union is sponsoring academic research into hESC-based innovative test systems. This development is supported by new testing strategies in Europe and the USA focussing on human cell-based in vitro systems for safety evaluations, and shifting the focus of toxicology away from classical animal experiments towards a more mechanistic understanding.JRC.I.3-In-vitro method

    Rearing conditions (isolated versus group rearing) affect rotenone-induced changes in the behavior of zebrafish (Danio rerio) embryos in the coiling assay

    Get PDF
    The authors would like to thank Dr Rick Chin Leong and Dr. Patrick Heinrich for proof-reading the manuscript. Further, the authors acknowledge the in-kind contribution of the National Decommissioning Centre, University of Aberdeen.Peer reviewe

    Current approaches and future role of high content imaging in safety sciences and drug discovery

    Get PDF
    High content imaging combines automated microscopy with image analysis approaches to simultaneously quantify multiple phenotypic and/or functional parameters in biological systems. The technology has become an important tool in the fields of safety sciences and drug discovery, because it can be used for mode-of-action identification, determination of hazard potency and the discovery of toxicity targets and biomarkers. In contrast to conventional biochemical endpoints, high content imaging provides insight into the spatial distribution and dynamics of responses in biological systems. This allows the identification of signaling pathways underlying cell defense, adaptation, toxicity and death. Therefore high content imaging is considered a promising technology to address the challenges for the Toxicity testing in the 21st century approach. Currently high content imaging technologies are frequently applied in academia for mechanistic toxicity studies and in pharmaceutical industry for the ranking and selection of lead drug compounds or to identify/confirm mechanisms underlying effects observed in vivo. A recent workshop gathered scientists working on high content imaging in academia, pharmaceutical industry and regulatory bodies with the objective to compile the state-of-the-art of the technology in the different institutions. They defined technical and methodological gaps, addressed the need for quality control, suggested control compounds and acceptance criteria, highlighted cell sources and new readouts and discussed future requirements for regulatory implementation. This review summarizes the discussion, proposed solutions and recommendations of the specialists contributing to the workshop.JRC.I.5-Systems Toxicolog

    The sensitivity of the zebrafish embryo coiling assay for the detection of neurotoxicity by compounds with diverse modes of action

    Get PDF
    Open Access via the Springer Agreement Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 681002 (EU-ToxRisk).Peer reviewedPublisher PD

    Chemical Concentrations in Cell Culture Compartments (C<sup>5</sup>) – Concentration Definitions

    Get PDF
    Some laboratory issues are taken for granted as they seem to be simple and not worth much thought. This applies to "concentrations of a chemical tested for bioactivity/toxicity". Can there be any issue about weighing a compound, diluting it in culture medium and calculating the final mass (or particle number)-to-volume ratio? We discuss here some basic concepts about concentrations and their units, addressing also differences between "dose" and "concentration". The problem of calculated nominal concentrations not necessarily corresponding to local concentrations (relevant for biological effects of a chemical) is highlighted. We present and exemplify different concentration measures, for instance those relying on weight, volume, or particle number of the test compound in a given volume; we also include normalizations to the mass, protein content, or cell number of the reference system. Interconversion is discussed as a major, often unresolved, issue. We put this into the context of the overall objective of defining concentrations, i.e., the determination of threshold values of bioactivity (e.g., an EC50). As standard approach for data display, the negative decadic logarithm of the molar concentrations (-log(M)) is recommended here, but arguments are also presented for exceptions from such a rule. These basic definitions are meant as a foundation for follow-up articles that examine the concepts of nominal, free, and intracellular concentrations to provide guidance on how to relate in vitro concentrations to in vivo doses by in vitro-to-in vivo extrapolation (IVIVE) in order to advance the use of new approach methods (NAM) in regulatory decision making.publishe

    Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis

    Get PDF
    Clostridial neurotoxins are bacterial endopeptidases that cleave the major SNARE proteins in peripheral motorneurons. Here, we show that disruption of synaptic architecture by botulinum neurotoxin C1 (BoNT/C) in central nervous system neurons activates distinct neurodegenerative programs in the axo-dendritic network and in the cell bodies. Neurites degenerate at an early stage by an active caspase-independent fragmentation characterized by segregation of energy competent mitochondria. Later, the cell body mitochondria release cytochrome c, which is followed by caspase activation, apoptotic nuclear condensation, loss of membrane potential, and, finally, cell swelling and lysis. Recognition and scavenging of dying processes by glia also precede the removal of apoptotic cell bodies, in line with a temporal and spatial segregation of different degenerative processes. Our results suggest that, in response to widespread synaptic damage, neurons first dismantle their connections and finally undergo apoptosis, when their spatial relationships are lost
    corecore