91 research outputs found

    Understanding Citizen Reactions and Ebola-Related Information Propagation on Social Media

    Full text link
    In severe outbreaks such as Ebola, bird flu and SARS, people share news, and their thoughts and responses regarding the outbreaks on social media. Understanding how people perceive the severe outbreaks, what their responses are, and what factors affect these responses become important. In this paper, we conduct a comprehensive study of understanding and mining the spread of Ebola-related information on social media. In particular, we (i) conduct a large-scale data-driven analysis of geotagged social media messages to understand citizen reactions regarding Ebola; (ii) build information propagation models which measure locality of information; and (iii) analyze spatial, temporal and social properties of Ebola-related information. Our work provides new insights into Ebola outbreak by understanding citizen reactions and topic-based information propagation, as well as providing a foundation for analysis and response of future public health crises.Comment: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2016

    Regularizing Matrix Factorization with User and Item Embeddings for Recommendation

    Full text link
    Following recent successes in exploiting both latent factor and word embedding models in recommendation, we propose a novel Regularized Multi-Embedding (RME) based recommendation model that simultaneously encapsulates the following ideas via decomposition: (1) which items a user likes, (2) which two users co-like the same items, (3) which two items users often co-liked, and (4) which two items users often co-disliked. In experimental validation, the RME outperforms competing state-of-the-art models in both explicit and implicit feedback datasets, significantly improving Recall@5 by 5.9~7.0%, NDCG@20 by 4.3~5.6%, and MAP@10 by 7.9~8.9%. In addition, under the cold-start scenario for users with the lowest number of interactions, against the competing models, the RME outperforms NDCG@5 by 20.2% and 29.4% in MovieLens-10M and MovieLens-20M datasets, respectively. Our datasets and source code are available at: https://github.com/thanhdtran/RME.git.Comment: CIKM 201

    The Dark Side of Micro-Task Marketplaces: Characterizing Fiverr and Automatically Detecting Crowdturfing

    Full text link
    As human computation on crowdsourcing systems has become popular and powerful for performing tasks, malicious users have started misusing these systems by posting malicious tasks, propagating manipulated contents, and targeting popular web services such as online social networks and search engines. Recently, these malicious users moved to Fiverr, a fast-growing micro-task marketplace, where workers can post crowdturfing tasks (i.e., astroturfing campaigns run by crowd workers) and malicious customers can purchase those tasks for only $5. In this paper, we present a comprehensive analysis of Fiverr. First, we identify the most popular types of crowdturfing tasks found in this marketplace and conduct case studies for these crowdturfing tasks. Then, we build crowdturfing task detection classifiers to filter these tasks and prevent them from becoming active in the marketplace. Our experimental results show that the proposed classification approach effectively detects crowdturfing tasks, achieving 97.35% accuracy. Finally, we analyze the real world impact of crowdturfing tasks by purchasing active Fiverr tasks and quantifying their impact on a target site. As part of this analysis, we show that current security systems inadequately detect crowdsourced manipulation, which confirms the necessity of our proposed crowdturfing task detection approach

    Signed Distance-based Deep Memory Recommender

    Full text link
    Personalized recommendation algorithms learn a user's preference for an item by measuring a distance/similarity between them. However, some of the existing recommendation models (e.g., matrix factorization) assume a linear relationship between the user and item. This approach limits the capacity of recommender systems, since the interactions between users and items in real-world applications are much more complex than the linear relationship. To overcome this limitation, in this paper, we design and propose a deep learning framework called Signed Distance-based Deep Memory Recommender, which captures non-linear relationships between users and items explicitly and implicitly, and work well in both general recommendation task and shopping basket-based recommendation task. Through an extensive empirical study on six real-world datasets in the two recommendation tasks, our proposed approach achieved significant improvement over ten state-of-the-art recommendation models

    Who Will Retweet This? Automatically Identifying and Engaging Strangers on Twitter to Spread Information

    Full text link
    There has been much effort on studying how social media sites, such as Twitter, help propagate information in different situations, including spreading alerts and SOS messages in an emergency. However, existing work has not addressed how to actively identify and engage the right strangers at the right time on social media to help effectively propagate intended information within a desired time frame. To address this problem, we have developed two models: (i) a feature-based model that leverages peoples' exhibited social behavior, including the content of their tweets and social interactions, to characterize their willingness and readiness to propagate information on Twitter via the act of retweeting; and (ii) a wait-time model based on a user's previous retweeting wait times to predict her next retweeting time when asked. Based on these two models, we build a recommender system that predicts the likelihood of a stranger to retweet information when asked, within a specific time window, and recommends the top-N qualified strangers to engage with. Our experiments, including live studies in the real world, demonstrate the effectiveness of our work
    • …
    corecore