91 research outputs found
Understanding Citizen Reactions and Ebola-Related Information Propagation on Social Media
In severe outbreaks such as Ebola, bird flu and SARS, people share news, and
their thoughts and responses regarding the outbreaks on social media.
Understanding how people perceive the severe outbreaks, what their responses
are, and what factors affect these responses become important. In this paper,
we conduct a comprehensive study of understanding and mining the spread of
Ebola-related information on social media. In particular, we (i) conduct a
large-scale data-driven analysis of geotagged social media messages to
understand citizen reactions regarding Ebola; (ii) build information
propagation models which measure locality of information; and (iii) analyze
spatial, temporal and social properties of Ebola-related information. Our work
provides new insights into Ebola outbreak by understanding citizen reactions
and topic-based information propagation, as well as providing a foundation for
analysis and response of future public health crises.Comment: 2016 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2016
Regularizing Matrix Factorization with User and Item Embeddings for Recommendation
Following recent successes in exploiting both latent factor and word
embedding models in recommendation, we propose a novel Regularized
Multi-Embedding (RME) based recommendation model that simultaneously
encapsulates the following ideas via decomposition: (1) which items a user
likes, (2) which two users co-like the same items, (3) which two items users
often co-liked, and (4) which two items users often co-disliked. In
experimental validation, the RME outperforms competing state-of-the-art models
in both explicit and implicit feedback datasets, significantly improving
Recall@5 by 5.9~7.0%, NDCG@20 by 4.3~5.6%, and MAP@10 by 7.9~8.9%. In addition,
under the cold-start scenario for users with the lowest number of interactions,
against the competing models, the RME outperforms NDCG@5 by 20.2% and 29.4% in
MovieLens-10M and MovieLens-20M datasets, respectively. Our datasets and source
code are available at: https://github.com/thanhdtran/RME.git.Comment: CIKM 201
The Dark Side of Micro-Task Marketplaces: Characterizing Fiverr and Automatically Detecting Crowdturfing
As human computation on crowdsourcing systems has become popular and powerful
for performing tasks, malicious users have started misusing these systems by
posting malicious tasks, propagating manipulated contents, and targeting
popular web services such as online social networks and search engines.
Recently, these malicious users moved to Fiverr, a fast-growing micro-task
marketplace, where workers can post crowdturfing tasks (i.e., astroturfing
campaigns run by crowd workers) and malicious customers can purchase those
tasks for only $5. In this paper, we present a comprehensive analysis of
Fiverr. First, we identify the most popular types of crowdturfing tasks found
in this marketplace and conduct case studies for these crowdturfing tasks.
Then, we build crowdturfing task detection classifiers to filter these tasks
and prevent them from becoming active in the marketplace. Our experimental
results show that the proposed classification approach effectively detects
crowdturfing tasks, achieving 97.35% accuracy. Finally, we analyze the real
world impact of crowdturfing tasks by purchasing active Fiverr tasks and
quantifying their impact on a target site. As part of this analysis, we show
that current security systems inadequately detect crowdsourced manipulation,
which confirms the necessity of our proposed crowdturfing task detection
approach
Signed Distance-based Deep Memory Recommender
Personalized recommendation algorithms learn a user's preference for an item
by measuring a distance/similarity between them. However, some of the existing
recommendation models (e.g., matrix factorization) assume a linear relationship
between the user and item. This approach limits the capacity of recommender
systems, since the interactions between users and items in real-world
applications are much more complex than the linear relationship. To overcome
this limitation, in this paper, we design and propose a deep learning framework
called Signed Distance-based Deep Memory Recommender, which captures non-linear
relationships between users and items explicitly and implicitly, and work well
in both general recommendation task and shopping basket-based recommendation
task. Through an extensive empirical study on six real-world datasets in the
two recommendation tasks, our proposed approach achieved significant
improvement over ten state-of-the-art recommendation models
Who Will Retweet This? Automatically Identifying and Engaging Strangers on Twitter to Spread Information
There has been much effort on studying how social media sites, such as
Twitter, help propagate information in different situations, including
spreading alerts and SOS messages in an emergency. However, existing work has
not addressed how to actively identify and engage the right strangers at the
right time on social media to help effectively propagate intended information
within a desired time frame. To address this problem, we have developed two
models: (i) a feature-based model that leverages peoples' exhibited social
behavior, including the content of their tweets and social interactions, to
characterize their willingness and readiness to propagate information on
Twitter via the act of retweeting; and (ii) a wait-time model based on a user's
previous retweeting wait times to predict her next retweeting time when asked.
Based on these two models, we build a recommender system that predicts the
likelihood of a stranger to retweet information when asked, within a specific
time window, and recommends the top-N qualified strangers to engage with. Our
experiments, including live studies in the real world, demonstrate the
effectiveness of our work
- …