69 research outputs found
Fomin-Kirillov algebras
This is an extended abstract of the talk given in the Oberwolfach
miniworkshop "Nichols algebras and Weyl groupoids" in October 2012.Comment: 2 page
Nichols algebras over groups with finite root system of rank two II
We classify all non-abelian groups G for which there exists a pair (V,W) of absolutely simple Yetter–Drinfeld modules over G such that the Nichols algebra of the direct sum of V and W is finite-dimensional, under two assumptions: the square of the braiding between V and W is not the identity, and G is generated by the support of V and W. As a corollary, we prove that the dimensions of such V and W are at most six. As a tool we use the Weyl groupoid of (V,W).Fil: Heckenberger, István. Philipps Universität Marburg; AlemaniaFil: Vendramin, Claudio Leandro. Philipps Universität Marburg; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Skew braces: a brief survey
Our primary focus is on the theory of skew braces, specifically exploring
their connection with combinatorial solutions to the Yang-Baxter equation. Skew
braces have recently emerged as intriguing algebraic structures, and their link
to the Yang-Baxter equation adds further depth and significance to their study.
Throughout this article, we place particular emphasis on various problems and
conjectures that arise within this field. These open questions serve to
stimulate further research and investigation, as we strive to enhance our
understanding of skew braces and their role in the study of the Yang-Baxter
equation.Comment: 22 pages.Typos corrected. XL Workshop on Geometric Methods in
Physics, Bia{\l}owie\.za 2023. Postprin
Isoclinism of skew braces
We define isoclinism of skew braces and present several applications. We
study some properties of skew braces that are invariant under isoclinism. For
example, we prove that right nilpotency is an isoclinism invariant. This result
has application in the theory of set-theoretic solutions to the Yang-Baxter
equation. We define isoclinic solutions and study multipermutation solutions
under isoclinism.Comment: 14 pages. Postprint versio
PBW deformations of a Fomin–Kirillov Algebra and other examples
We begin the study of PBW deformations of graded algebras relevant to the theory of Hopf algebras. One of our examples is the Fomin–Kirillov algebra E3. Another one appeared in a paper of García Iglesias and Vay. As a consequence of our methods, we determine when the deformations are semisimple and we are able to produce PBW bases and polynomial identities for these deformations.Fil: Heckenberger, I.. Philipps-Universität Marburg; AlemaniaFil: Vendramin, Claudio Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin
Finite-dimensional Nichols algebras of simple Yetter-Drinfeld modules (over groups) of prime dimension
Acknowledgements. EM would like to thank Ben Martin for fruitful discussions about geometric invariant theory in positive characteristicPeer reviewe
Combinatorial solutions to the reflection equation
We use ring-theoretic methods and methods from the theory of skew braces to
produce set-theoretic solutions to the reflection equation. We also use
set-theoretic solutions to construct solutions to the parameter-dependent
reflection equation.Comment: 20 pages. Final versio
A characterization of finite multipermutation solutions of the Yang-Baxter equation
We prove that a finite non-degenerate involutive set-theoretic solution (X, r) of the Yang{Baxter equation is a multipermutation solution if and only if its structure group G(X, r) admits a left ordering or equivalently it is poly-Z.Fil: Bachiller, David. Universitat Autònoma de Barcelona; EspañaFil: Cedó, Ferran. Universitat Autònoma de Barcelona; EspañaFil: Vendramin, Claudio Leandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin
- …