37,631 research outputs found
Performance Analysis of Classification Algorithms for Activity Recognition using Micro-Doppler Feature
Classification of different human activities using micro-Doppler data and features is considered in this study, focusing on the distinction between walking and running. 240 recordings from 2 different human subjects were collected in a series of simulations performed in the real motion data from the Carnegie Mellon University Motion Capture Database. The maximum the micro-Doppler frequency shift and the period duration are utilized as two classification criterions. Numerical results are compared against several classification techniques including the Linear Discriminant Analysis (LDA), NaĂŻve Bayes (NB), K-nearest neighbors (KNN), Support Vector Machine(SVM) algorithms. The performance of different classifiers is discussed aiming at identifying the most appropriate features for the walking and running classification
Router deployment of Streetside Parking Sensor Networks in Urban Areas
The deployment of urban infrastructure is very important for urban sensor
applications. In this paper, we studied and introduced the deployment strategy
of wireless on-street parking sensor networks. We defined a multiple-objective
problem with four objectives, and solved them with real street parking map. The
results show two sets of Pareto Front with the minimum energy consumption,
sensing information delay and the amount of deployed routers and gateways. The
result can be considered to provide urban service roadside unit or be taken
into account while designing a deployment algorithm.Comment: UM - Urban Modelling Symposium, Oct 2014, Lyon, France.
\<http://urbanmodelling.sciencesconf.org/\&g
Performance Comparison of Contention- and Schedule-based MAC Protocols in Urban Parking Sensor Networks
Network traffic model is a critical problem for urban applications, mainly
because of its diversity and node density. As wireless sensor network is highly
concerned with the development of smart cities, careful consideration to
traffic model helps choose appropriate protocols and adapt network parameters
to reach best performances on energy-latency tradeoffs. In this paper, we
compare the performance of two off-the-shelf medium access control protocols on
two different kinds of traffic models, and then evaluate their application-end
information delay and energy consumption while varying traffic parameters and
network density. From the simulation results, we highlight some limits induced
by network density and occurrence frequency of event-driven applications. When
it comes to realtime urban services, a protocol selection shall be taken into
account - even dynamically - with a special attention to energy-delay tradeoff.
To this end, we provide several insights on parking sensor networks.Comment: ACM International Workshop on Wireless and Mobile Technologies for
Smart Cities (WiMobCity) (2014
How to Choose the Relevant MAC Protocol for Wireless Smart Parking Urban Networks?
Parking sensor network is rapidly deploying around the world and is regarded
as one of the first implemented urban services in smart cities. To provide the
best network performance, the MAC protocol shall be adaptive enough in order to
satisfy the traffic intensity and variation of parking sensors. In this paper,
we study the heavy-tailed parking and vacant time models from SmartSantander,
and then we apply the traffic model in the simulation with four different kinds
of MAC protocols, that is, contention-based, schedule-based and two hybrid
versions of them. The result shows that the packet interarrival time is no
longer heavy-tailed while collecting a group of parking sensors, and then
choosing an appropriate MAC protocol highly depends on the network
configuration. Also, the information delay is bounded by traffic and MAC
parameters which are important criteria while the timely message is required.Comment: The 11th ACM International Symposium on Performance Evaluation of
Wireless Ad Hoc, Sensor, and Ubiquitous Networks (2014
- …