496 research outputs found
Oligosarcomas, IDH-mutant are distinct and aggressive
Oligodendrogliomas are defined at the molecular level by the presence of an IDH mutation and codeletion of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 24 IDH-mutant oligosarcomas from 23 patients forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 12 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dense network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA and CALD1, loss of OLIG2 and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Copy number neutral LOH was determined as underlying mechanism. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional CNS WHO grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas as first recurrence than for grade 3 oligodendrogliomas as first recurrence. These results establish oligosarcomas as a distinct group of IDH-mutant gliomas differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. The diagnosis can be based on the combined presence of (a) sarcomatous histology, (b) IDH-mutation and (c) TERT promoter mutation and/or 1p/19q codeletion, or, in unresolved cases, on its characteristic DNA methylation profile.
Keywords: 1p/19q; Codeletion; DNA methylation; Gliosarcoma; NF1; Oligodendroglioma; Oligosarcoma; Prognosis; SMA; Subtype; TERT; TP53; Type; Variant; YAP1
Removal of Fluoride from Mine Water via Adsorption for Land-Applied Soil Amendment
The team researched, designed, and economically analyzed a full-scale adsorption column system to be applied in mining processes that leave high amounts of fluoride in their effluent. This system was designed to remove fluoride from water saturated with calcium sulfate, as calcium sulfate is present in high amounts in certain mining processes. Currently, high density sludge (HDS) is commonly employed to reduce fluoride concentrations, but due to solubility limits the sludge treatment cannot lower fluoride below 10 mg/L (ppm). The current enforceable EPA standard for discharged water is at 4 mg/L (ppm), although mining companies anticipate that this standard will soon be lowered to 2 ppm. The team was tasked with designing a process to lower 10 ppm fluoride down to 2 ppm.
The team investigated various methods such as precipitation, ion exchange, and reverse osmosis to remove fluoride from the system. These methods were not cost-effective and did not produce environmentally friendly byproducts. The team ultimately presented the solution of bone char as an adsorbent, with a byproduct that can be safely applied as a soil amendment. A full-scale facility with two adsorption columns was designed to treat 1000 gpm of water
Removal of Fluoride from Mine Water via Adsorption for Land-Applied Soil Amendment
The Moo Pig Sooie’s researched, designed, and economically analyzed a full-scale adsorption column system to be applied in mining processes that leave high amounts of fluoride in their effluent. This system was designed to remove fluoride from water saturated with calcium sulfate, as calcium sulfate is present in high amounts in certain mining processes. Currently, high density sludge (HDS) is commonly employed to reduce fluoride concentrations, but due to solubility limits the sludge treatment cannot lower fluoride below 10 mg/L (ppm). The current enforceable EPA standard for discharged water is at 4 mg/L (ppm), although mining companies anticipate that this standard will soon be lowered to 2 ppm. The Moo Pig Sooie’s were tasked with designing a process to lower 10 ppm fluoride down to 2 ppm.
Moo Pig Sooie investigated various methods such as precipitation, ion exchange, and reverse osmosis to remove fluoride from the system. These methods were not cost-effective and did not produce environmentally friendly byproducts. The team ultimately presented the solution of bone char as an adsorbent, with a byproduct that can be safely applied as a soil amendment. A full-scale facility with two adsorption columns was designed to treat 1000 gpm of water
Removal of Fluoride from Mine Water via Adsorption for Land-Applied Soil Amendment
The process of mining minerals and elements from ores and rocks creates acid rock drainage (ARD). This drainage is water that contains heavy metals and minerals that can be dangerous for human consumption or damaging to the environment. The mining industry has employed various water treatment methods to prevent these metals and minerals from being discharged into water sources such as ponds, lakes, and streams. Currently, the most used treatment process in the mining industry is a cost-effective highdensity sludge (HDS) process. This method reduces the concentration of metals and elements with the use of lime/limestone. However, the concentration of fluoride is not reduced to Environmental Protection Agency (EPA) standards, and so it is necessary to design a fluoride removal system. Reverse osmosis (RO) was considered as well as precipitation, ion exchange, and adsorption by media such as biochars, bone char, and activated alumina. Although RO is perhaps the most obvious solution to reducing fluoride concentrations, this method was eliminated due to expensive overhead and maintenance costs. Many metals and compounds present in the mine water will lead to severe scaling and precipitates collecting in the membrane, requiring constant upkeep and high maintenance costs. Precipitation was eliminated because it produced a byproduct only suitable for landfilling, and ion exchange was eliminated due to its high cost and complications with competitive ions. Adsorption was chosen as a viable option for fluoride removal because of its low cost and environmentally friendly byproduct generation. The adsorption media was chosen based on a ranking system designed by our team. This system provided a way for our team to compare the adsorption capacity, rate of adsorption, byproduct application, and price per ton for each adsorbent. From this ranking system, Moo Pig Sooie is presenting a solution of cow bone char as a fluoride adsorbent. This type of biochar can be bought pre-charred and can be land applied as a fertilizer once the char is spent. A full-scale facility was designed to treat 1000 gallons per minute (GPM) of mine water 24 hours a day, seven days a week, for eight months out of the year. To achieve this flowrate and timeline, two packed beds with volumes of 8,900 ft3 each were designed to run in parallel to ensure loading does not occur until the 168-hour mark, the end of the work week. Once the bone char is loaded, the spent bone char will be hauled offsite to be land applied in soil that is naturally slightly acidic. Our experimental results indicate that minimal amounts of fluoride are stripped from bone char in acidic environments. Applying spent bone char to soil presented a desirable environmentally friendly solution for our byproduct. The overall capital cost of a full-scale facility is approximately 4,778,840. Although this is high, the proposed solution will reduce the concentration of fluoride to EPA standards of 2ppm and the process will generate a land-applicable byproduct. Since consuming fluoride in excessive amounts can lead to health issues, public awareness is a necessary aspect of this solution. Citizens affected by the application of fluoride to their soil and water sources should be regularly involved in and aware of the fluoride levels in their environment. From our analysis of bone char adsorption, Moo Pig Sooie believes this type of treatment is a beneficial, cost effective, and sustainable solution for mining facilities that generate high concentrations of fluoride in their water
Removal of Fluoride from Mine Water via Adsorption for Land-Applied Soil Amendment
The process of mining minerals and elements from ores and rocks creates acid rock drainage (ARD). This drainage is water that contains heavy metals and minerals that can be dangerous for human consumption or damaging to the environment. The mining industry has employed various water treatment methods to prevent these metals and minerals from being discharged into water sources such as ponds, lakes, and streams. Currently, the most used treatment process in the mining industry is a cost-effective highdensity sludge (HDS) process. This method reduces the concentration of metals and elements with the use of lime/limestone. However, the concentration of fluoride is not reduced to Environmental Protection Agency (EPA) standards, and so it is necessary to design a fluoride removal system. Reverse osmosis (RO) was considered as well as precipitation, ion exchange, and adsorption by media such as biochars, bone char, and activated alumina. Although RO is perhaps the most obvious solution to reducing fluoride concentrations, this method was eliminated due to expensive overhead and maintenance costs. Many metals and compounds present in the mine water will lead to severe scaling and precipitates collecting in the membrane, requiring constant upkeep and high maintenance costs. Precipitation was eliminated because it produced a byproduct only suitable for landfilling, and ion exchange was eliminated due to its high cost and complications with competitive ions. Adsorption was chosen as a viable option for fluoride removal because of its low cost and environmentally friendly byproduct generation. The adsorption media was chosen based on a ranking system designed by our team. This system provided a way for our team to compare the adsorption capacity, rate of adsorption, byproduct application, and price per ton for each adsorbent. From this ranking system, Moo Pig Sooie is presenting a solution of cow bone char as a fluoride adsorbent. This type of biochar can be bought pre-charred and can be land applied as a fertilizer once the char is spent. A full-scale facility was designed to treat 1000 gallons per minute (GPM) of mine water 24 hours a day, seven days a week, for eight months out of the year. To achieve this flowrate and timeline, two packed beds with volumes of 8,900 ft3 each were designed to run in parallel to ensure loading does not occur until the 168-hour mark, the end of the work week. Once the bone char is loaded, the spent bone char will be hauled offsite to be land applied in soil that is naturally slightly acidic. Our experimental results indicate that minimal amounts of fluoride are stripped from bone char in acidic environments. Applying spent bone char to soil presented a desirable environmentally friendly solution for our byproduct. The overall capital cost of a full-scale facility is approximately 4,778,840. Although this is high, the proposed solution will reduce the concentration of fluoride to EPA standards of 2ppm and the process will generate a land-applicable byproduct. Since consuming fluoride in excessive amounts can lead to health issues, public awareness is a necessary aspect of this solution. Citizens affected by the application of fluoride to their soil and water sources should be regularly involved in and aware of the fluoride levels in their environment. From our analysis of bone char adsorption, Moo Pig Sooie believes this type of treatment is a beneficial, cost effective, and sustainable solution for mining facilities that generate high concentrations of fluoride in their water
The optical spectrum of a large isolated polycyclic aromatic hydrocarbon: hexa-peri-hexabenzocoronene, C42H18
The first optical spectrum of an isolated polycyclic aromatic hydrocarbon
large enough to survive the photophysical conditions of the interstellar medium
is reported. Vibronic bands of the first electronic transition of the all
benzenoid polycyclic aromatic hydrocarbon hexa-peri-hexabenzocoronene were
observed in the 4080-4530 Angstrom range by resonant 2-color 2-photon
ionization spectroscopy. The strongest feature at 4264 Angstrom is estimated to
have an oscillator strength of f=1.4x10^-3, placing an upper limit on the
interstellar abundance of this polycyclic aromatic hydrocarbon at 4x10^12
cm^-2, accounting for a maximum of ~0.02% of interstellar carbon. This study
opens up the possibility to rigorously test neutral polycyclic aromatic
hydrocarbons as carriers of the diffuse interstellar bands in the near future.Comment: 9 pages, 1 figure. Fixed a typo on the frequency of the 'b' ban
User-centered development of a Virtual Research Environment to support collaborative research events
This paper discusses the user-centred development process within the Collaborative Research Events on the Web (CREW) project, funded under the JISC Virtual Research Environments (VRE) programme. After presenting the project, its aims and the functionality
of the CREW VRE, we focus on the user engagement approach, grounded in the method of co-realisation. We describe the different research settings and requirements of our three embedded user groups and the respective activities conducted so far. Finally we elaborate on
the main challenges of our user engagement approach and end with the project’s next steps
Verification of a 2 kWe Closed-Brayton-Cycle Power Conversion System Mechanical Dynamics Model
Vibration test data from an operating 2 kWe closed-Brayton-cycle (CBC) power conversion system (PCS) located at the NASA Glenn Research Center was used for a comparison with a dynamic disturbance model of the same unit. This effort was performed to show that a dynamic disturbance model of a CBC PCS can be developed that can accurately predict the torque and vibration disturbance fields of such class of rotating machinery. The ability to accurately predict these disturbance fields is required before such hardware can be confidently integrated onto a spacecraft mission. Accurate predictions of CBC disturbance fields will be used for spacecraft control/structure interaction analyses and for understanding the vibration disturbances affecting the scientific instrumentation onboard. This paper discusses how test cell data measurements for the 2 kWe CBC PCS were obtained, the development of a dynamic disturbance model used to predict the transient torque and steady state vibration fields of the same unit, and a comparison of the two sets of data
Recommended from our members
Toward vicarious calibration of microwave remote-sensing satellites in arid environments
The Soil Moisture and Ocean Salinity (SMOS)
satellite marks the commencement of dedicated global surface
soil moisture missions, and the first mission to make passive microwave observations at L-band. On-orbit calibration is an essential part of the instrument calibration strategy, but on-board beam-filling targets are not practical for such large apertures. Therefore, areas to serve as vicarious calibration targets need to be identified. Such sites can only be identified through field
experiments including both in situ and airborne measurements. For this purpose, two field experiments were performed in central Australia. Three areas are studied as follows: 1) Lake Eyre, a typically dry salt lake; 2) Wirrangula Hill, with sparse vegetation and a dense cover of surface rock; and 3) Simpson Desert, characterized by dry sand dunes. Of those sites, only Wirrangula
Hill and the Simpson Desert are found to be potentially
suitable targets, as they have a spatial variation in brightness temperatures of <4 K under normal conditions. However, some limitations are observed for the Simpson Desert, where a bias of 15 K in vertical and 20 K in horizontal polarization exists between model predictions and observations, suggesting a lack of understanding of the underlying physics in this environment.
Subsequent comparison with model predictions indicates a SMOS bias of 5 K in vertical and 11 K in horizontal polarization, and an unbiased root mean square difference of 10 K in both polarizations for Wirrangula Hill. Most importantly, the SMOS observations show that the brightness temperature evolution is dominated by regular seasonal patterns and that precipitation events have only little impact
- …