1,348 research outputs found

    Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal

    Full text link
    Here we demonstrate that water-infiltrated nanoporous glass electrically switches an oxide semiconductor from an insulator to metal. We fabricated the field effect transistor structure on an oxide semiconductor, SrTiO3, using 100%-water-infiltrated nanoporous glass - amorphous 12CaO*7Al2O3 - as the gate insulator. For positive gate voltage, electron accumulation, water electrolysis and electrochemical reduction occur successively on the SrTiO3 surface at room temperature, leading to the formation of a thin (~3 nm) metal layer with an extremely high electron concentration of 10^15-10^16 cm^-2, which exhibits exotic thermoelectric behaviour.Comment: 21 pages, 12 figure

    Genome Expression Profile Analysis of the Immature Maize Embryo during Dedifferentiation

    Get PDF
    Maize is one of the most important cereal crops worldwide and one of the primary targets of genetic manipulation, which provides an excellent way to promote its production. However, the obvious difference of the dedifferentiation frequency of immature maize embryo among various genotypes indicates that its genetic transformation is dependence on genotype and immature embryo-derived undifferentiated cells. To identify important genes and metabolic pathways involved in forming of embryo-derived embryonic calli, in this study, DGE (differential gene expression) analysis was performed on stages I, II, and III of maize inbred line 18-599R and corresponding control during the process of immature embryo dedifferentiation. A total of ∼21 million cDNA tags were sequenced, and 4,849,453, 5,076,030, 4,931,339, and 5,130,573 clean tags were obtained in the libraries of the samples and the control, respectively. In comparison with the control, 251, 324 and 313 differentially expressed genes (DEGs) were identified in the three stages with more than five folds, respectively. Interestingly, it is revealed that all the DEGs are related to metabolism, cellular process, and signaling and information storage and processing functions. Particularly, the genes involved in amino acid and carbohydrate transport and metabolism, cell wall/membrane/envelope biogenesis and signal transduction mechanism have been significantly changed during the dedifferentiation. To our best knowledge, this study is the first genome-wide effort to investigate the transcriptional changes in dedifferentiation immature maize embryos and the identified DEGs can serve as a basis for further functional characterization

    Quantum Criticality in Heavy Fermion Metals

    Full text link
    Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, which use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including i) the extent to which the quantum criticality in heavy fermion metals goes beyond the standard theory of order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum critical regime, iii) the non-Fermi liquid phenomena that accompany quantum criticality, and iv) the interplay between quantum criticality and unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review article, intended for general readers; the discussion part contains more specialized topic

    Unfaithful Maintenance of Methylation Imprints Due to Loss of Maternal Nuclear Dnmt1 during Somatic Cell Nuclear Transfer

    Get PDF
    The low success rate of somatic cell nuclear transfer (SCNT) in mammalian cloning is largely due to imprinting problems. However, little is known about the mechanisms of reprogramming imprinted genes during SCNT. Parental origin-specific DNA methylation regulates the monoallelic expression of imprinted genes. In natural fertilization, methylation imprints are established in the parental germline and maintained throughout embryonic development. However, it is unclear whether methylation imprints are protected from global changes of DNA methylation in cloned preimplantation embryos. Here, we demonstrate that cloned porcine preimplantation embryos exhibit demethylation at differentially methylated regions (DMRs) of imprinted genes; in particular, demethylation occurs during the first two cell cycles. By RNAi-mediated knockdown, we found that Dnmt1 is required for the maintenance of methylation imprints in porcine preimplantation embryos. However, no clear signals were detected in the nuclei of oocytes and preimplantation embryos by immunofluorescence. Thus, Dnmt1 is present at very low levels in the nuclei of porcine oocytes and preimplantation embryos and maintains methylation imprints. We further showed that methylation imprints were rescued in nonenucleated metaphase II (MII) oocytes. Our results indicate that loss of Dnmt1 in the maternal nucleus during SCNT significantly contributes to the unfaithful maintenance of methylation imprints in cloned embryos

    Rice-Map: a new-generation rice genome browser

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The concurrent release of rice genome sequences for two subspecies (<it>Oryza sativa </it>L. ssp. <it>japonica </it>and <it>Oryza sativa </it>L. ssp. <it>indica</it>) facilitates rice studies at the whole genome level. Since the advent of high-throughput analysis, huge amounts of functional genomics data have been delivered rapidly, making an integrated online genome browser indispensable for scientists to visualize and analyze these data. Based on next-generation web technologies and high-throughput experimental data, we have developed Rice-Map, a novel genome browser for researchers to navigate, analyze and annotate rice genome interactively.</p> <p>Description</p> <p>More than one hundred annotation tracks (81 for <it>japonica </it>and 82 for <it>indica</it>) have been compiled and loaded into Rice-Map. These pre-computed annotations cover gene models, transcript evidences, expression profiling, epigenetic modifications, inter-species and intra-species homologies, genetic markers and other genomic features. In addition to these pre-computed tracks, registered users can interactively add comments and research notes to Rice-Map as User-Defined Annotation entries. By smoothly scrolling, dragging and zooming, users can browse various genomic features simultaneously at multiple scales. On-the-fly analysis for selected entries could be performed through dedicated bioinformatic analysis platforms such as WebLab and Galaxy. Furthermore, a BioMart-powered data warehouse "Rice Mart" is offered for advanced users to fetch bulk datasets based on complex criteria.</p> <p>Conclusions</p> <p>Rice-Map delivers abundant up-to-date <it>japonica </it>and <it>indica </it>annotations, providing a valuable resource for both computational and bench biologists. Rice-Map is publicly accessible at <url>http://www.ricemap.org/</url>, with all data available for free downloading.</p

    Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population

    Get PDF
    BACKGROUND: Nasopharyngeal carcinoma (NPC) is one of the most common cancers in southern China. In addition to environmental factors such as Epstein-Barr virus infection and diet, genetic susceptibility has been reported to play a key role in the development of this disease. The x-ray repair cross-complementing group 1 (XRCC1) gene is important in DNA base excision repair. We hypothesized that two common single nucleotide polymorphisms of XRCC1 (codons 194 Arg→Trp and 399 Arg→Gln) are related to the risk of NPC and interact with tobacco smoking. METHODS: We sought to determine whether these genetic variants of the XRCC1 gene were associated with the risk of NPC among the Cantonese population in a hospital-based case control study using polymerase chain reaction-restriction fragment length polymorphism analysis. We conducted this study in 462 NPC patients and 511 healthy controls. RESULTS: After adjustment for sex and age, we found a reduced risk of developing NPC in individuals with the Trp194Trp genotype (OR = 0.48; 95% CI, 0.27–0.86) and the Arg194Trp genotype (OR = 0.79; 95% CI, 0.60–1.05) compared with those with the Arg194Arg genotype. Compared with those with the Arg399Arg genotype, the risk for NPC was not significantly different in individuals with the Arg399Gln genotype (OR = 0.82; 95% CI, 0.62–1.08) and the Gln399Gln genotype (OR = 1.20; 95% CI, 0.69–2.06). Further analyses stratified by gender and smoking status revealed a significantly reduced risk of NPC among males (OR = 0.32; 95% CI, 0.14–0.70) and smokers (OR = 0.34; 95% CI, 0.14–0.82) carrying the XRCC1 194Trp/Trp genotype compared with those carrying the Arg/Arg genotype. No association was observed between Arg399Gln variant genotypes and the risk of NPC combined with smoking and gender. CONCLUSION: Our findings suggest that the XRCC1 Trp194Trp variant genotype is associated with a reduced risk of developing NPC in Cantonese population, particularly in males and smokers. Larger studies are needed to confirm our findings and unravel the underlying mechanisms

    Dynamic regulation of canonical TGF beta signalling by endothelial transcription factor ERG protects from liver fibrogenesis

    Get PDF
    The role of the endothelium in protecting from chronic liver disease and TGFβ-mediated fibrosis remains unclear. Here we describe how the endothelial transcription factor ETS-related gene (ERG) promotes liver homoeostasis by controlling canonical TGFβ-SMAD signalling, driving the SMAD1 pathway while repressing SMAD3 activity. Molecular analysis shows that ERG binds to SMAD3, restricting its access to DNA. Ablation of ERG expression results in endothelial-to-mesenchymal transition (EndMT) and spontaneous liver fibrogenesis in EC-specific constitutive hemi-deficient (ErgcEC-Het) and inducible homozygous deficient mice (ErgiEC-KO), in a SMAD3-dependent manner. Acute administration of the TNF-α inhibitor etanercept inhibits carbon tetrachloride (CCL4)-induced fibrogenesis in an ERG-dependent manner in mice. Decreased ERG expression also correlates with EndMT in tissues from patients with end-stage liver fibrosis. These studies identify a pathogenic mechanism where loss of ERG causes endothelial-dependent liver fibrogenesis via regulation of SMAD2/3. Moreover, ERG represents a promising candidate biomarker for assessing EndMT in liver disease

    A strategy for emergency treatment of Schistosoma japonicum-infested water

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schistosomiasis japonica, caused by contact with <it>Schistosoma japonicum </it>cercaria-infested water when washing, bathing or production, remains a major public-health concern in China. The purpose of the present study was to investigate the effect of a suspension concentrate of niclosamide (SCN) on killing cercaria of <it>S. japonicum </it>that float on the water surface, and its toxicity to fish, so as to establish an emergency-treatment intervention for rapidly killing cercaria and eliminating water infectivity.</p> <p>Results</p> <p>At 30 min after spraying 100 mg/L SCN, with niclosamide dosages of 0.01, 0.02, 0.03, 0.04 g/m<sup>2</sup>, the water infectivity reduced significantly and no infectivity was found at 60 min after spraying SCN. The surface of static water was sprayed with 100 mg/L SCN, the peak concentration was found at 0 min, and the solution diffused to site with a water depth of 10 cm after 10 min. 30 min later, SCN diffused to the whole water body, and distributed evenly. After spraying 100 mg/L SCN onto the surface of the water with a volume of(3.14 × 20<sup>2</sup>×50)cm<sup>3</sup>, with niclosamide dosages of 0.02 g/m<sup>2</sup>, 96 h later, no death of zebra fish was observed.</p> <p>Conclusions</p> <p>By spraying 100 mg/L SCN, with a niclosamide dosage of 0.02 g/m<sup>2 </sup>onto the surface of <it>S. japonicum</it>-infested water, infectivity of the water can be eliminated after 30-60 min, and there is no evident toxicity to fish. This cercaria-killing method, as an emergency-treatment intervention for infested water, can be applied in those forecasting and early warning systems for schistosomiasis.</p

    Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms

    Get PDF
    Butenolide [5-octylfuran-2(5H)-one] is a recently discovered and very promising anti-marine-fouling compound. In this study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans, and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target) organisms. According to OECD's guideline, the predicted no effect concentration (PNEC) was 0.168 µg l−1, which was among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK), Bcl-2 family proteins, and caspases and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this antifouling compound
    corecore