67 research outputs found

    Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome wide analysis of variation within a species can reveal the evolution of fundamental biological processes such as mutation, recombination, and natural selection. We compare genome wide sequence differences between two independent isolates of the nematode <it>Caenorhabditis elegans </it>(CB4856 and CB4858) and the reference genome (N2).</p> <p>Results</p> <p>The base substitution pattern when comparing N2 against CB4858 reveals a transition over transversion bias (1.32:1) that is not present in CB4856. In CB4856, there is a significant bias in the direction of base substitution. The frequency of A or T bases in N2 that are G or C bases in CB4856 outnumber the opposite frequencies for transitions as well as transversions. These differences were not observed in the N2/CB4858 comparison. Similarly, we observed a strong bias for deletions over insertions in CB4856 (1.44: 1) that is not present in CB4858. In both CB4856 and CB4858, there is a significant correlation between SNP rate and recombination rate on the autosomes but not on the X chromosome. Furthermore, we identified numerous significant hotspots of variation in the CB4856-N2 comparison.</p> <p>In both CB4856 and CB4858, based on a measure of the strength of selection (k<sub>a</sub>/k<sub>s</sub>), all the chromosomes are under negative selection and in CB4856, there is no difference in the strength of natural selection in either the autosomes versus X or between any of the chromosomes. By contrast, in CB4858, k<sub>a</sub>/k<sub>s </sub>values are smaller in the autosomes than in the X chromosome. In addition, in CB4858, k<sub>a</sub>/k<sub>s </sub>values differ between chromosomes.</p> <p>Conclusions</p> <p>The clear bias of deletions over insertions in CB4856 suggests that either the CB4856 genome is becoming smaller or the N2 genome is getting larger. We hypothesize the hotspots found represent alleles that are shared between CB4856 and CB4858 but not N2. Because the k<sub>a</sub>/k<sub>s </sub>ratio in the X chromosome is higher than the autosomes on average in CB4858, purifying selection is reduced on the X chromosome.</p

    Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system

    Get PDF
    A novel strategy for profiling Caenorhabditis elegans cells identifies transcripts highly enriched in either the embryonic or larval C. elegans nervous system, including 19 conserved transcripts of unknown function that are also expressed in the mammalian brain

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions

    The IDENTIFY study: the investigation and detection of urological neoplasia in patients referred with suspected urinary tract cancer - a multicentre observational study

    Get PDF
    Objective To evaluate the contemporary prevalence of urinary tract cancer (bladder cancer, upper tract urothelial cancer [UTUC] and renal cancer) in patients referred to secondary care with haematuria, adjusted for established patient risk markers and geographical variation. Patients and Methods This was an international multicentre prospective observational study. We included patients aged ≥16 years, referred to secondary care with suspected urinary tract cancer. Patients with a known or previous urological malignancy were excluded. We estimated the prevalence of bladder cancer, UTUC, renal cancer and prostate cancer; stratified by age, type of haematuria, sex, and smoking. We used a multivariable mixed-effects logistic regression to adjust cancer prevalence for age, type of haematuria, sex, smoking, hospitals, and countries. Results Of the 11 059 patients assessed for eligibility, 10 896 were included from 110 hospitals across 26 countries. The overall adjusted cancer prevalence (n = 2257) was 28.2% (95% confidence interval [CI] 22.3–34.1), bladder cancer (n = 1951) 24.7% (95% CI 19.1–30.2), UTUC (n = 128) 1.14% (95% CI 0.77–1.52), renal cancer (n = 107) 1.05% (95% CI 0.80–1.29), and prostate cancer (n = 124) 1.75% (95% CI 1.32–2.18). The odds ratios for patient risk markers in the model for all cancers were: age 1.04 (95% CI 1.03–1.05; P < 0.001), visible haematuria 3.47 (95% CI 2.90–4.15; P < 0.001), male sex 1.30 (95% CI 1.14–1.50; P < 0.001), and smoking 2.70 (95% CI 2.30–3.18; P < 0.001). Conclusions A better understanding of cancer prevalence across an international population is required to inform clinical guidelines. We are the first to report urinary tract cancer prevalence across an international population in patients referred to secondary care, adjusted for patient risk markers and geographical variation. Bladder cancer was the most prevalent disease. Visible haematuria was the strongest predictor for urinary tract cancer
    corecore