60 research outputs found

    An Updated Review of Interventions that Include Promotion of Physical Activity for Adult Men

    Get PDF
    The marked disparity in life expectancy between men and women suggests men are a vulnerable group requiring targeted health promotion programs. As such, there is an increasing need for health promotion strategies that effectively engage men with their health and/or illness management. Programs that promote physical activity could significantly improve the health of men. Although George et al. (Sports Med 42(3):281, 30) reviewed physical activity programs involving adult males published between 1990 and 2010, developments in men’s health have prompted the emergence of new sex- and gender-specific approaches targeting men. The purpose of this review was to: (1) extend and update the review undertaken by George et al. (Sports Med 42(3):281, 30) concerning the effectiveness of physical activity programs in males, and (2) evaluate the integration of gender-specific influences in the content, design, and delivery of men’s health promotion programs. A search of MEDLINE, CINAHL, ScienceDirect, Web of Science, PsycINFO, the Cochrane Library, and the SPORTDiscus databases for articles published between January 2010 and August 2014 was conducted. In total, 35 studies, involving evaluations of 31 programs, were identified. Findings revealed that a variety of techniques and modes of delivery could effectively promote physical activity among men. Though the majority of programs were offered exclusively to men, 12 programs explicitly integrated gender-related influences in male-specific programs in ways that recognized men’s interests and preferences. Innovations in male-only programs that focus on masculine ideals and gender influences to engage men in increasing their physical activity hold potential for informing strategies to promote other areas of men’s health

    Pseudoresonant laser wakefield acceleration driven by 10.6-μm laser light

    No full text
    This paper describes an experiment to demonstrate, for the first time, laser wakefield acceleration (LWFA), driven by 10.6-μm light from a CO2 laser. This experiment is also noteworthy because it will operate in a pseudoresonant LWFA regime, in which the laser-pulse-length is too long for resonant LWFA, but too short for self-modulated LWFA. Nonetheless, high acceleration gradients are still possible. This experiment builds upon an earlier experiment called staged electron laser acceleration (STELLA), where efficient trapping and monoenergetic laser acceleration of electrons were demonstrated using inverse free electron lasers. The aim is to apply the STELLA approach of laser-driven microbunch formation followed by laser-driven trapping and acceleration to LWFA. These capabilities are important for a practical electron linear accelerator based upon LWFA. © 2005 IEEE

    Inverse free electron lasers and laser wakefield acceleration driven by CO2 lasers.

    No full text
    The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e-beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e-beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e-beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO(2) laser beam

    Update on seeded SM-LWFA and pseudo-resonant LWFA experiments - (STELLA-LW)

    No full text
    The Staged Electron Laser Acceleration - Laser Wakefield (STELLA-LW) experiment is investigating two new methods for laser wakefield acceleration (LWFA) using the TW CO2 laser available at the Brookhaven National Laboratory Accelerator Test Facility. The first is seeded self-modulated LWFA where an ultrashort electron bunch (seed) precedes the laser pulse to generate a wakefield that the laser pulse subsequently amplifies. The second is pseudo-resonant LWFA where nonlinear pulse steepening of the laser pulse occurs in the plasma allowing the laser pulse to generate significant wakefields. The status of these experiments is reviewed. Evidence of wakefield generation caused by the seed bunches has been obtained as well as preliminary energy gain measurements of a witness bunch following the seeds. Comparison with a 1-D linear model for the wakefield generation appears to agree with the data. © 2006 American Institute of Physics
    corecore