7 research outputs found

    Importance of Madden–Julian oscillation phase to the interannual variability of East African rainfall

    Get PDF
    Precipitation across East Africa shows marked interannual variability. Seasonal forecast skill for the OND short rains is significantly higher than for the MAM long rains, which also exhibit poorly understood decadal variability. On sub-seasonal time-scales rainfall is influenced strongly by the phase of the Madden–Julian Oscillation (MJO); here we investigate whether this influence extends to interannual and decadal scales. We show that the number of days that the MJO is active and in phases 1–3 has a greater influence than the mean amplitude of the MJO on interannual long rains variability (ρ = 0.59 for the count of phases 1–3, compared to ρ = 0.40 for amplitude). The frequency of these days is linked to a newly identified gradient in Pacific sea-surface temperatures (SSTs), whose influence on long rains variability we show is itself mediated by the MJO. We develop a statistical model estimating East African rainfall from MJO state, and show that the influence of the MJO on seasonal rainfall extends to the short rains, and to a lesser extent also into January and February. Our results show the importance of capturing the SST-MJO phase relationship in models used for predictions of East African rainfall across time-scales, and motivate investigating this further

    GCRF African SWIFT White Paper Policy Brief: The future of African weather forecasting

    Get PDF
    There is a huge opportunity for the African continent to benefit from the ‘silent revolution’ in weather forecasting that has been realised in the mid-latitudes throughout the twentieth century. While there are tremendous societal and economic benefits from advancing the science behind weather forecasting in sub-Saharan Africa, there are also significant barriers to realising advances. This policy brief examines the value of investment in African weather forecasting science and the technical & communication challenges that this will bring with wider implementation

    GCRF African SWIFT and ForPAc SHEAR White Paper on the Potential of Operational Weather Prediction to Save Lives and Improve Livelihoods and Economies in Sub-Saharan Africa

    Get PDF
    The ‘silent revolution’ of numerical weather prediction (NWP) has led to significant social benefits and billions of dollars in economic benefits to mid-latitude countries, however the level of benefit in sub-Saharan Africa has been very limited, despite the potential to save lives, improve livelihoods, protect property and infrastructure and boost economies. Ongoing climate change in Africa, and the associated projected intensification of weather impacts in coming decades, makes the realisation of effective and more reliable weather forecasts and climate services even more urgent. It is widely recognised that to achieve this potential, investment is required in strengthening decision makers’ understanding of weather predictions and confidence in interpreting and appropriately applying forecasts, alongside transparent communication of the levels of skill and probability or certainty in forecast products. However, on all time scales of prediction, it is generally unrecognised that many forecasts that produce user-relevant metrics have such low skill that they are only marginally valuable to stakeholders, creating significant practical and ethical barriers to increasing uptake and generating benefits. Here, we present substantial evidence that even a modest investment in science for weather information and forecast techniques, to provide new technology and tools for Africa, can significantly increase the skill of user-relevant forecast products on all time scales. This will be a necessary enabler for building trust in and uptake of decision-relevant forecasts with the potential to deliver significant social and economic benefits. We present here an argument that incremental improvements in the skill of weather forecasting across all timescales in the African tropics, alongside strengthening communication and understanding of these forecasts, is fundamental to saving lives and enhancing livelihoods. Investing in the capacity and capability of National Meteorological Services and research institutions is essential to ensure lifesaving and life-enhancing services continue to be developed with and designed to serve the populations of sub-Saharan countries

    Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale

    Get PDF
    African society is particularly vulnerable to climate change. The representation of convection in climate models has so far restricted our ability to accurately simulate African weather extremes, limiting climate change predictions. Here we show results from climate change experiments with a convection-permitting (4.5 km grid-spacing) model, for the first time over an Africa-wide domain (CP4A). The model realistically captures hourly rainfall characteristics, unlike coarser resolution models. CP4A shows greater future increases in extreme 3-hourly precipitation compared to a convection-parameterised 25 km model (R25). CP4A also shows future increases in dry spell length during the wet season over western and central Africa, weaker or not apparent in R25. These differences relate to the more realistic representation of convection in CP4A, and its response to increasing atmospheric moisture and stability. We conclude that, with the more accurate representation of convection, projected changes in both wet and dry extremes over Africa may be more severe
    corecore