28 research outputs found

    An Updated Review of Interventions that Include Promotion of Physical Activity for Adult Men

    Get PDF
    The marked disparity in life expectancy between men and women suggests men are a vulnerable group requiring targeted health promotion programs. As such, there is an increasing need for health promotion strategies that effectively engage men with their health and/or illness management. Programs that promote physical activity could significantly improve the health of men. Although George et al. (Sports Med 42(3):281, 30) reviewed physical activity programs involving adult males published between 1990 and 2010, developments in men’s health have prompted the emergence of new sex- and gender-specific approaches targeting men. The purpose of this review was to: (1) extend and update the review undertaken by George et al. (Sports Med 42(3):281, 30) concerning the effectiveness of physical activity programs in males, and (2) evaluate the integration of gender-specific influences in the content, design, and delivery of men’s health promotion programs. A search of MEDLINE, CINAHL, ScienceDirect, Web of Science, PsycINFO, the Cochrane Library, and the SPORTDiscus databases for articles published between January 2010 and August 2014 was conducted. In total, 35 studies, involving evaluations of 31 programs, were identified. Findings revealed that a variety of techniques and modes of delivery could effectively promote physical activity among men. Though the majority of programs were offered exclusively to men, 12 programs explicitly integrated gender-related influences in male-specific programs in ways that recognized men’s interests and preferences. Innovations in male-only programs that focus on masculine ideals and gender influences to engage men in increasing their physical activity hold potential for informing strategies to promote other areas of men’s health

    Using a site-specific technical error to establish training responsiveness: a preliminary explorative study

    No full text
    Ryan M Weatherwax,1,2 Nigel K Harris,1 Andrew E Kilding,3 Lance C Dalleck2 1Auckland University of Technology, Human Potential Center, Auckland, New Zealand; 2Western State Colorado University, Recreation and Exercise & Sport Science, Gunnison, CO, USA; 3Auckland University of Technology, Sports Performance Research Institute New Zealand, Auckland, New Zealand Background: Even though cardiorespiratory fitness (CRF) training elicits numerous health benefits, not all individuals have positive training responses following a structured CRF intervention. It has been suggested that the technical error (TE), a combination of biological variability and measurement error, should be used to establish specific training responsiveness criteria to gain further insight on the effectiveness of the training program. To date, most training interventions use an absolute change or a TE from previous findings, which do not take into consideration the training site and equipment used to establish training outcomes or the specific cohort being evaluated. The purpose of this investigation was to retrospectively analyze training responsive­ness of two CRF training interventions using two common criteria and a site-specific TE.Methods: Sixteen men and women completed two maximal graded exercise tests and verification bouts to identify maximal oxygen consumption (VO2max) and establish a site-specific TE. The TE was then used to retrospectively analyze training responsiveness in comparison to commonly used criteria: percent change of >0% and >+5.6% in VO2max.Results: The TE was found to be 7.7% for relative VO2max. χ2 testing showed significant differences in all training criteria for each intervention and pooled data from both interventions, except between %Δ >0 and %Δ >+7.7% in one of the investigations. Training nonresponsiveness ranged from 11.5% to 34.6%.Conclusion: Findings from the present study support the utility of site-specific TE criterion to quantify training responsiveness. A similar methodology of establishing a site-specific and even cohort specific TE should be considered to establish when true cardiorespiratory training adaptations occur. Keywords: training responders, training nonresponders, cardiorespiratory fitness, exercise training&nbsp

    Can reducing sitting time in the university setting improve the cardiometabolic health of college students?

    No full text
    Karrie M Butler,1 Joyce S Ramos,2 Christina A Buchanan,1 Lance C Dalleck1,2 1Department of Recreation, Exercise, and Sport Science, Western State Colorado University, Gunnison, CO, USA; 2SHAPE Research Centre, Exercise Science and Clinical Exercise Physiology, College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia Purpose: The high prevalence of metabolic syndrome (MetS), prediabetes, and increased risk of cardiovascular diseases linked with prolonged sitting has created a need to identify options to limit sedentary behaviors. A potentially simple approach to achieve this goal in the university setting is to provide students the option to stand during courses rather than sit. The purpose of the present study was to examine the effects of standing in the college classroom setting on cardiometabolic risk factors in a cohort of college students.Patients and methods: Healthy college students (n=21) who attended at least two courses per week (a minimum of 5 hours) in a specified university building with standing desks participated in a 7-week intervention that was divided into three phases: 3 weeks of standing, 1 week of washout (sitting), and 3 weeks of sitting. The participants (mean ± SD: age, height, weight, body mass index, and waist-to-hip ratio were 22.7±6.4 years, 174.3±10.0 cm, 70.6±14.3 kg, 23.0±3.0 kg/m2, and 0.76±0.05, respectively) were randomly assigned to the phase of intervention of which they should start (sitting or standing), and all participants engaged in sitting during the washout phase. Cardiometabolic risk factors and metabolic equivalents (METs) were measured at baseline and weekly throughout the intervention.Results: Paired t-tests revealed significant differences (P<0.05) in all cardiometabolic risk factors between the 3 weeks of sitting and 3 weeks of standing time blocks. Moreover, MetS z-score was significantly improved (P<0.05) during the 3 weeks of standing (–5.91±2.70) vs 3 weeks of sitting (–5.25±2.69). The METs were significantly higher (P<0.05) during standing (1.47±0.09) than during sitting (1.02±0.07). Although there was considerable interindividual variability in the ∆ MetS z-score response, there was a 100% (21/21) incidence of a favorable change (ie, responders) in MetS z-score response.Conclusion: A standing desk in the classroom paradigm was found to significantly improve cardiometabolic health throughout a short 3 weeks time span. Increasing standing time in the classroom, and therefore lessening weekly sedentary behavior, could be a potential wide-scale, effective strategy for primordial prevention of cardiometabolic diseases. Keywords: inactivity physiology, primordial prevention, sedentary behavio

    The prevalence of adverse cardiometabolic responses to exercise training with evidence-based practice is low

    No full text
    Lance C Dalleck,1 Gary P Van Guilder,2 Tara B Richardson,1 Chantal A Vella3 1Recreation, Exercise, and Sport Science Department, Western State Colorado University, Gunnison, CO, USA; 2Department of Health and Nutritional Sciences, South Dakota State University, Brookings, SD, USA; 3Department of Movement Sciences, WWAMI Medical Education Program, University of Idaho, Moscow, ID, USA Background: The purpose of this study was to determine the prevalence of individuals who experienced exercise-induced adverse cardiometabolic response (ACR), following an evidence-based, individualized, community exercise program. Methods: Prevalence of ACR was retrospectively analyzed in 332 adults (190 women, 142 men) before and after a 14-week supervised community exercise program. ACR included an exercise training-induced increase in systolic blood pressure of 10 mmHg, increase in plasma triglycerides (TG) of >37.0 mg/dL (0.42 mmol/L), or decrease in high-density lipoprotein cholesterol (HDL-C) of >4.0 mg/dL (0.12 mmol/L). A second category of ACR was also defined – this was ACR that resulted in a metabolic syndrome component (ACR-risk) as a consequence of the adverse response. Results: According to the above criteria, prevalence of ACR between baseline and post-program was systolic blood pressure (6.0%), TG (3.6%), and HDL-C (5.1%). The prevalence of ACR-risk was elevated TG (3.2%), impaired fasting blood glucose (2.7%), low HDL-C (2.2%), elevated waist circumference (1.3%), and elevated blood pressure (0.6%). Conclusion: Evidence-based practice exercise programming may attenuate the prevalence of exercise training-induced ACR. Our findings provide important preliminary evidence needed for the vision of exercise prescription as a personalized form of preventative medicine to become a reality. Keywords: evidence-based research, cardiovascular health, community-based research, metabolic healt

    A community-based exercise intervention transitions metabolically abnormal obese adults to a metabolically healthy obese phenotype

    No full text
    Lance C Dalleck,1,3 Gary P Van Guilder,2,3 Tara B Richardson,1 Donald L Bredle,3 Jeffrey M Janot31Recreation, Exercise, and Sport Science Department, Western State Colorado University, Gunnison, CO, USA; 2Department of Health and Nutritional Sciences, South Dakota State University, Brookings, SD, USA; 3Department of Kinesiology, University of Wisconsin-Eau Claire, Eau Claire, WI, USABackground: Lower habitual physical activity and poor cardiorespiratory fitness are common features of the metabolically abnormal obese (MAO) phenotype that contribute to increased cardiovascular disease risk. The aims of the present study were to determine 1) whether community-based exercise training transitions MAO adults to metabolically healthy, and 2) whether the odds of transition to metabolically healthy were larger for obese individuals who performed higher volumes of exercise and/or experienced greater increases in fitness.Methods and results: Metabolic syndrome components were measured in 332 adults (190 women, 142 men) before and after a supervised 14-week community-based exercise program designed to reduce cardiometabolic risk factors. Obese (body mass index ≥30 kg · m2) adults with two to four metabolic syndrome components were classified as MAO, whereas those with no or one component were classified as metabolically healthy but obese (MHO). After community exercise, 27/68 (40%) MAO individuals (P<0.05) transitioned to metabolically healthy, increasing the total number of MHO persons by 73% (from 37 to 64). Compared with the lowest quartiles of relative energy expenditure and change in fitness, participants in the highest quartiles were 11.6 (95% confidence interval: 2.1–65.4; P<0.05) and 7.5 (95% confidence interval: 1.5–37.5; P<0.05) times more likely to transition from MAO to MHO, respectively.Conclusion: Community-based exercise transitions MAO adults to metabolically healthy. MAO adults who engaged in higher volumes of exercise and experienced the greatest increase in fitness were significantly more likely to become metabolically healthy. Community exercise may be an effective model for primary prevention of cardiovascular disease.Keywords: exercise, obesity, prevention, risk factor
    corecore