8 research outputs found

    Application of Flexible Bronchoscopy in Inhalation Lung Injury

    Get PDF
    Background: As acute inhalational injury is an uncommon presentation to most institutions, a standard approach to its assessment and management, especially using flexible bronchoscopy, has not received significant attention. Methods: The objective of this study is to evaluate the value of using flexible bronchoscopy as part of the evaluation and management of patients with inhalational lung injury. Twenty-three cases of inhalational lung injury were treated in our three hospitals after a fire in a residential building. The twenty cases that underwent bronchoscopy as part of their management are included in this analysis. After admission, the first bronchoscopy was conducted within 18-72 hours post inhalational injury. G2-level patients were reexamined 24 hours after the first bronchoscopy, while G1-level patients were reexamined 72 hours later. Subsequently, all patients were re-examined every 2-3 days until recovered or until only tunica mucosa bronchi congestion was identified by bronchoscopy. Results: Twenty patients had airway injury diagnosed by bronchoscopy including burns to the larynx and glottis or large airways. Bronchoscopic classification of the inhalation injury was performed, identifying 12 cases of grade G1 changes and 8 cases of grade G2. The airway injury in the 12 cases of grade G1 patients demonstrated recovery in 2-8 days, in the airway injury of the 8 cases of grade G2 patients had a prolonged recovery with airway injury improving in 6-21 days averaged. The difference in recovery time between the two groups was significant (P Conclusions: The use of flexible bronchoscopy has great value in the diagnosis of inhalational injury without any complications. Its use should be incorporated into clinical practice

    Burn Injury Reduces Neutrophil Directional Migration Speed in Microfluidic Devices

    Get PDF
    Thermal injury triggers a fulminant inflammatory cascade that heralds shock, end-organ failure, and ultimately sepsis and death. Emerging evidence points to a critical role for the innate immune system, and several studies had documented concurrent impairment in neutrophil chemotaxis with these post-burn inflammatory changes. While a few studies suggest that a link between neutrophil motility and patient mortality might exist, so far, cumbersome assays have prohibited exploration of the prognostic and diagnostic significance of chemotaxis after burn injury. To address this need, we developed a microfluidic device that is simple to operate and allows for precise and robust measurements of chemotaxis speed and persistence characteristics at single-cell resolution. Using this assay, we established a reference set of migration speed values for neutrophils from healthy subjects. Comparisons with samples from burn patients revealed impaired directional migration speed starting as early as 24 hours after burn injury, reaching a minimum at 72–120 hours, correlated to the size of the burn injury and potentially serving as an early indicator for concurrent infections. Further characterization of neutrophil chemotaxis using this new assay may have important diagnostic implications not only for burn patients but also for patients afflicted by other diseases that compromise neutrophil functions

    Burn wound healing and treatment: review and advancements

    No full text
    corecore