62 research outputs found

    Circulating soluble Fas levels and risk of ovarian cancer

    Get PDF
    BACKGROUND: Dysregulation of apoptosis, specifically overexpression of soluble Fas (sFas), has been proposed to play a role in the development of ovarian cancer. The main objective of the present study was to evaluate serum sFas as a potential biomarker of ovarian cancer risk. METHODS: The association between serum sFas levels and the risk of ovarian cancer was examined in a case-control study nested within three prospective cohorts in New York (USA), Umeå (Sweden), and Milan (Italy). Case subjects were 138 women with primary invasive epithelial ovarian cancer diagnosed between 2 months and 13.2 years after the initial blood donation. Control subjects were 263 women who were free of cancer, and matched the case on cohort, menopausal status, age, and enrollment date. Serum sFas levels were determined using a quantitative sandwich enzyme immunoassay. RESULTS: Serum sFas levels were similar in women subsequently diagnosed with ovarian cancer (median, 6.5 ng/mL; range, 4.4 – 10.2) and in controls (median, 6.8 ng/mL; range, 4.5 – 10.1). Statistically significant trends of increasing serum sFas with age were observed among cases (r = 0.39, p < 0.0001) and controls (r = 0.42, p < 0.0001). Compared to women in the lowest third, women in the highest third of serum sFas were not at increased risk of ovarian cancer after adjustment for potential confounders (odd ratio (OR), 0.87; 95% confidence interval (CI), 0.42 – 1.82). CONCLUSION: The results suggest that serum sFas may not be a suitable marker for identification of women at increased risk of ovarian cancer

    Granulocytes mediates the Fas-L-associated apoptosis during lung metastasis of melanoma that determines the metastatic behaviour

    Get PDF
    The survival of tumour cells in a new tissue environment is crucial for tumour metastasis. Factors contributing to the death of tumour cells during metastasis are not completely understood. In murine melanoma model, activation of Fas (CD95, APO-1) signal in tumour cells reduces their lung metastasis potential, which may be associated with an induction of apoptosis in tumours. To elucidate the cellular mechanism, we used a Fas-ligand (Fas-L) specific ribozyme (Fas-Lribozyme) to suppress the expression of Fas-L but not Fas or TNF-α in B16F10 melanoma cells. The Fas-Lribozyme-carrying cells grew slightly faster in vitro with better viability than controls. Suppression of Fas-L in B16F10 melanoma cells by Fas-Lribozyme enhanced lung metastasis of the cells in C57BL/6 mice, and that was correlated with reductions in both apoptotic tumour cells and granulocytic infiltration. Mice depleted of granulocytes, but not CD4+ and CD8+ cells, showed a greatly elevated susceptibility to lung metastasis. Moreover, apoptosis in tumour cells was significantly reduced in granulocyte-depleted mice during the course of tumour formation. Taken together, our findings indicate that Fas-L-associated apoptosis in tumour cells determines the metastasis behaviour of melanoma in the lung and this apoptosis is primarily mediated by the cytotoxicity of recruited granulocytes

    Synergistic induction of cell death in liver tumor cells by TRAIL and chemotherapeutic drugs via the BH3-only proteins Bim and Bid

    Get PDF
    Although death receptors and chemotherapeutic drugs activate distinct apoptosis signaling cascades, crosstalk between the extrinsic and intrinsic apoptosis pathway has been recognized as an important amplification mechanism. Best known in this regard is the amplification of the Fas (CD95) signal in hepatocytes via caspase 8-mediated cleavage of Bid and activation of the mitochondrial apoptosis pathway. Recent evidence, however, indicates that activation of other BH3-only proteins may also be critical for the crosstalk between death receptors and mitochondrial triggers. In this study, we show that TNF-related apoptosis-inducing ligand (TRAIL) and chemotherapeutic drugs synergistically induce apoptosis in various transformed and untransformed liver-derived cell lines, as well as in primary human hepatocytes. Both, preincubation with TRAIL as well as chemotherapeutic drugs could sensitize cells for apoptosis induction by the other respective trigger. TRAIL induced a strong and long lasting activation of Jun kinase, and activation of the BH3-only protein Bim. Consequently, synergistic induction of apoptosis by TRAIL and chemotherapeutic drugs was dependent on Jun kinase activity, and expression of Bim and Bid. These findings confirm a previously defined role of TRAIL and Bim in the regulation of hepatocyte apoptosis, and demonstrate that the TRAIL–Jun kinase–Bim axis is a major and important apoptosis amplification pathway in primary hepatocytes and liver tumor cells

    Immunoregulatory Mechanisms Underlying Prevention of Colitis-Associated Colorectal Cancer by Probiotic Bacteria

    Get PDF
    Background: Inflammatory bowel disease (IBD) increases the risk of colorectal cancer. Probiotic bacteria produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anticarcinogenic effects. This study aimed to investigate the cellular and molecular mechanisms underlying the efficacy of probiotic bacteria in mouse models of cancer. Methodology/Principal Findings: The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in mouse models of inflammation-driven colorectal cancer. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen and colonic lamina propria lymphocytes (LPL) were phenotypically and functionally characterized. Mice treated with CLA or VSL#3 recovered faster from the acute inflammatory phase of disease and had lower disease severity in the chronic, tumor-bearing phase of disease. Adenoma and adenocarcinoma formation was also diminished by both treatments. VSL#3 increased the mRNA expression of TNF-a, angiostatin and PPAR c whereas CLA decreased COX-2 levels. Moreover, VSL#3-treated mice had increased IL-17 expression in MLN CD4+ T cells and accumulation of Treg LPL and memory CD4+ T cells. Conclusions/Significance: Both CLA and VSL#3 suppressed colon carcinogenesis, although VSL#3 showed greater anticarcinogeni

    Deficient activation of CD95 (APO-1/ Fas)-mediated apoptosis: a potential factor of multidrug resistance in human renal cell carcinoma

    Get PDF
    The pronounced resistance of human renal cell carcinoma (RCC) to anticancer-induced apoptosis has primarily been related to the expression of P-glycoprotein and effective drug detoxification mechanisms. Because the CD95 system has recently been identified as a key mediator of anticancer drug-induced apoptosis, we analysed the contribution of the CD95 system to chemotherapy-induced apoptosis in four newly established RCC cell lines. Here, we demonstrate that all RCC cell lines expressed CD95-receptor and -ligand. Exposure to agonistic anti-CD95 antibodies resulted in induction of apoptosis and significant (P< 0.05) reduction of cell number in three out of four cell lines, indicating that the essential components for CD95-mediated apoptosis were present and functionally intact in the majority of these RCC cell lines. Moreover, treatment of cultures with bleomycin or topotecan, a novel topoisomerase I inhibitor with little substrate affinity for P-glycoprotein, led to induction of apoptosis and significant (P< 0.05) dose-dependent reduction of cell number in all RCC cell lines. Both anticancer drugs also induced upregulation of CD95 ligand expression in all cell lines. Additionally, augmentation of CD95 receptor expression was found in three RCC cell lines, including one p53-mutated cell line, whereas another p53-mutated cell line showed no or only a weak CD95 receptor upregulation after exposure to topotecan or bleomycin, respectively. Despite this upregulation of CD95 receptor and ligand, antagonistic antibodies directed against CD95 receptors or ligands could not inhibit induction of apoptosis by topotecan and bleomycin in any cell line. Thus, although a functionally intact CD95 signalling cascade is present in most RCC cell lines, the anticancer drugs topotecan and bleomycin that induce upregulation of CD95 receptor and ligand fail to effectively activate CD95-mediated apoptosis. This deficient activation of CD95-mediated apoptosis might be an important additional factor for the multidrug resistance phenotype of human RCCs. © 2000 Cancer Research Campaig

    Apoptosis, autophagy, necroptosis, and cancer metastasis

    Get PDF

    Indomethacin-induced activation of the death receptor-mediated apoptosis pathway circumvents acquired doxorubicin resistance in SCLC cells

    Get PDF
    Small-cell lung cancers (SCLCs) initially respond to chemotherapy but are often resistant at recurrence. A potentially new method to overcome resistance is to combine classical chemotherapeutic drugs with apoptosis induction via tumour necrosis factor (TNF) death receptor family members such as Fas. The doxorubicin-resistant human SCLC cell line GLC(4)-Adr and its parental doxorubicin-sensitive line GLC(4) were used to analyse the potential of the Fas-mediated apoptotic pathway and the mitochondrial apoptotic pathway to modulate doxorubicin resistance in SCLC. Western blotting showed that all proteins necessary for death-inducing signalling complex formation and several inhibitors of apoptosis were expressed in both lines. The proapototic proteins Bid and caspase-8, however, were higher expressed in GLC(4)-Adr. In addition, GLC(4)-Adr expressed more Fas (3.1x) at the cell membrane. Both lines were resistant to anti-Fas antibody, but plus the protein synthesis inhibitor cycloheximide anti-Fas antibody induced 40% apoptosis in GLC(4)-Adr. Indomethacin, which targets the mitochondrial apoptotic pathway, induced apoptosis in GLC(4)-Adr but not in GLC(4) cells. Surprisingly, in GLC(4)-Adr indomethacin induced caspase-8 and caspase-9 activation as well as Bid cleavage, while both caspase-8 and caspase-9 specific inhibitors blocked indomethacin-induced apoptosis. In GLC(4)-Adr, doxorubicin plus indomethacin resulted in elevated caspase activity and a 2.7-fold enhanced sensitivity to doxorubicin. In contrast, no effect of indomethacin on doxorubicin sensitivity was observed in GLC(4). Our findings show that indomethacin increases the cytotoxic activity of doxorubicin in a doxorubicin-resistant SCLC cell line partly via the death receptor apoptosis pathway, independent of Fas
    • …
    corecore