73 research outputs found

    Lack of Cetuximab induced skin toxicity in a previously irradiated field: case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Mutation, amplification or dysregulation of the EGFR family leads to uncontrolled division and predisposes to cancer. Inhibiting the EGFR represents a form of targeted cancer therapy.</p> <p>Case report</p> <p>We report the case of 79 year old gentlemen with a history of skin cancer involving the left ear who had radiation and surgical excision. He had presented with recurrent lymph node in the left upper neck. We treated him with radiation therapy concurrently with Cetuximab. He developed a skin rash over the face and neck area two weeks after starting Cetuximab, which however spared the previously irradiated area.</p> <p>Conclusion</p> <p>The etiology underlying the sparing of the previously irradiated skin maybe due to either decrease in the population of EGFR expressing cells or decrease in the EGFR expression.</p> <p>We raised the question that "Is it justifiable to use EGFR inhibitors for patients having recurrence in the previously irradiated field?" We may need further research to answer this question which may guide the physicians in choosing appropriate drug in this scenario.</p

    R497K polymorphism in epidermal growth factor receptor gene is associated with the risk of acute coronary syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies suggested that genetic polymorphisms in the epidermal growth factor receptor (EGFR) gene had been implicated in the susceptibility to some tumors and inflammatory diseases. EGFR has been recently implicated in vascular pathophysiological processes associated with excessive remodeling and atherosclerosis. Acute coronary syndrome (ACS) is a clinical manifestation of preceding atherosclerosis. Our purpose was to investigate the association of the EGFR polymorphism with the risk of ACS. In this context, we analyzed the HER-1 R497K and EGFR intron 1 (CA)<sub>n </sub>repeat polymorphisms in 191 patients with ACS and 210 age- and sex-matched controls in a Chinese population, using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) strategy and direct sequencing.</p> <p>Results</p> <p>There were significant differences in the genotype and allele distribution of R497K polymorphism of the EGFR gene between cases and controls. The <it>Lys </it>allele had a significantly increased risk of ACS compared with the <it>Arg </it>allele (adjusted OR = 1.49, 95% CI: 1.12–1.98, adjusted <it>P </it>= 0.006). However, no significant relationship between the number of (CA)<sub>n </sub>repeats of EGFR intron 1 (both alleles < 20 or any allele ≥ 20) and the risk of ACS was observed (adjusted OR = 0.97, 95% CI: 0.58–1.64, adjusted <it>P </it>= 0.911). Considering these two polymorphisms together, there was no statistically significant difference between the two groups.</p> <p>Conclusion</p> <p>R497K polymorphism of the EGFR gene is significantly associated with the risk of ACS. Our data suggests that R497K polymorphism may be used as a genetic susceptibility marker of the ACS.</p

    Double blind, randomized, placebo controlled clinical trial for the treatment of diabetic foot ulcers, using a nitric oxide releasing patch: PATHON

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes Mellitus constitutes one of the most important public health problems due to its high prevalence and enormous social and economic consequences. Diabetic foot ulcers are one of the chronic complications of diabetes mellitus and constitute the most important cause of non-traumatic amputation of inferior limbs. It is estimated that 15% of the diabetic population will develop an ulcer sometime in their lives. Although novel therapies have been proposed, there is no effective treatment for this pathology. Naturally produced nitric oxide participates in the wound healing process by stimulating the synthesis of collagen, triggering the release of chemotactic cytokines, increasing blood vessels permeability, promoting angiogenic activity, stimulating the release of epidermical growth factors, and by interfering with the bacterial mitochondrial respiratory chain. Topically administered nitric oxide has demonstrated to be effective and safe for the treatment of chronic ulcers secondary to cutaneous leishmaniasis. However, due to their unstable nitric oxide release, the topical donors needed to be applied frequently, diminishing the adherence to the treatment. This difficulty has led to the development of a multilayer polymeric transdermal patch produced by electrospinning technique that guarantees a constant nitric oxide release. The main objective of this study is to evaluate the effectiveness and safety of this novel nitric oxide releasing wound dressing for the treatment of diabetic foot ulcers.</p> <p>Methods and design</p> <p>A double-blind, placebo-controlled clinical trial, including 100 diabetic patients was designed. At the time of enrollment, a complete medical evaluation and laboratory tests will be performed, and those patients who meet the inclusion criteria randomly assigned to one of two groups. Over the course of 90 days group 1 will receive active patches and group 2 placebo patches. The patients will be seen by the research group at least every two weeks until the healing of the ulcer or the end of the treatment. During each visit the healing process of the ulcer, the patient's health status and the presence of adverse events will be assessed. Should the effectiveness of the patches be demonstrated an alternative treatment would then be available to patients.</p> <p>Trial registration</p> <p>NCT00428727.</p

    Genomics and proteomics approaches to the study of cancer-stroma interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development and progression of cancer depend on its genetic characteristics as well as on the interactions with its microenvironment. Understanding these interactions may contribute to diagnostic and prognostic evaluations and to the development of new cancer therapies. Aiming to investigate potential mechanisms by which the tumor microenvironment might contribute to a cancer phenotype, we evaluated soluble paracrine factors produced by stromal and neoplastic cells which may influence proliferation and gene and protein expression.</p> <p>Methods</p> <p>The study was carried out on the epithelial cancer cell line (Hep-2) and fibroblasts isolated from a primary oral cancer. We combined a conditioned-medium technique with subtraction hybridization approach, quantitative PCR and proteomics, in order to evaluate gene and protein expression influenced by soluble paracrine factors produced by stromal and neoplastic cells.</p> <p>Results</p> <p>We observed that conditioned medium from fibroblast cultures (FCM) inhibited proliferation and induced apoptosis in Hep-2 cells. In neoplastic cells, 41 genes and 5 proteins exhibited changes in expression levels in response to FCM and, in fibroblasts, 17 genes and 2 proteins showed down-regulation in response to conditioned medium from Hep-2 cells (HCM). Nine genes were selected and the expression results of 6 down-regulated genes (<it>ARID4A</it>, <it>CALR</it>, <it>GNB2L1</it>, <it>RNF10</it>, <it>SQSTM1</it>, <it>USP9X</it>) were validated by real time PCR.</p> <p>Conclusions</p> <p>A significant and common denominator in the results was the potential induction of signaling changes associated with immune or inflammatory response in the absence of a specific protein.</p

    Signal Transduction Pathway in Human Middle Ear Cholesteatoma

    No full text
    corecore