1,446 research outputs found
Conchoidal transform of two plane curves
The conchoid of a plane curve is constructed using a fixed circle in
the affine plane. We generalize the classical definition so that we obtain a
conchoid from any pair of curves and in the projective plane. We
present two definitions, one purely algebraic through resultants and a more
geometric one using an incidence correspondence in \PP^2 \times \PP^2. We
prove, among other things, that the conchoid of a generic curve of fixed degree
is irreducible, we determine its singularities and give a formula for its
degree and genus. In the final section we return to the classical case: for any
given curve we give a criterion for its conchoid to be irreducible and we
give a procedure to determine when a curve is the conchoid of another.Comment: 18 pages Revised version: slight title change, improved exposition,
fixed proof of Theorem 5.3 Accepted for publication in Appl. Algebra Eng.,
Commun. Comput
A Formalization of the Theorem of Existence of First-Order Most General Unifiers
This work presents a formalization of the theorem of existence of most
general unifiers in first-order signatures in the higher-order proof assistant
PVS. The distinguishing feature of this formalization is that it remains close
to the textbook proofs that are based on proving the correctness of the
well-known Robinson's first-order unification algorithm. The formalization was
applied inside a PVS development for term rewriting systems that provides a
complete formalization of the Knuth-Bendix Critical Pair theorem, among other
relevant theorems of the theory of rewriting. In addition, the formalization
methodology has been proved of practical use in order to verify the correctness
of unification algorithms in the style of the original Robinson's unification
algorithm.Comment: In Proceedings LSFA 2011, arXiv:1203.542
Continuum theory of vacancy-mediated diffusion
We present and solve a continuum theory of vacancy-mediated diffusion (as
evidenced, for example, in the vacancy driven motion of tracers in crystals).
Results are obtained for all spatial dimensions, and reveal the strongly
non-gaussian nature of the tracer fluctuations. In integer dimensions, our
results are in complete agreement with those from previous exact lattice
calculations. We also extend our model to describe the vacancy-driven
fluctuations of a slaved flux line.Comment: 25 Latex pages, subm. to Physical Review
Exact Calculation of the Vortex-Antivortex Interaction Energy in the Anisotropic 3D XY-model
We have developed an exact method to calculate the vortex-antivortex
interaction energy in the anisotropic 3D-XY model. For this calculation, dual
transformation which is already known for the 2D XY-model was extended. We
found an explicit form of this interaction energy as a function of the
anisotropic ratio and the separation between the vortex and antivortex
located on the same layer. The form of interaction energy is at the
small limi t but is proportional to at the opposite limit. This form of
interaction energ y is consistent with the upper bound calculation using the
variational method by Cataudella and Minnhagen.Comment: REVTeX 12 pages, In print for publication in Phys. Rev.
Fractional vortices on grain boundaries --- the case for broken time reversal symmetry in high temperature superconductors
We discuss the problem of broken time reversal symmetry near grain boundaries
in a d-wave superconductor based on a Ginzburg-Landau theory. It is shown that
such a state can lead to fractional vortices on the grain boundary. Both
analytical and numerical results show the structure of this type of state.Comment: 9 pages, RevTeX, 5 postscript figures include
Decoupling of superconducting layers in magnetic superconductor RuSr_{2}GdCu_{2}O_{8}
We propose the model for magnetic properties of the magnetic superconductor
RuSrGdCuO, which incorporates the theory of the
superconducting/ferromagnetic multilayers. The transition line , on
which the Josephson coupled superconducting planes are decoupled, i.e. , is calculated as a function of the exchange energy . As the
result of this decoupling a nonmonotonic behavior of magnetic properties, like
the lower critical field , Josephson plasma frequency, etc. is realized
near (or by crossing) the line. The obtained results are used in
analyzing the newly discovered antiferromagnetic ruthenocuprate
RuSrGdCuO with possible weak ferromagnetic order in the RuO
planes.Comment: 12 pages, 3 figs embede
A Matrix Big Bang
The light-like linear dilaton background represents a particularly simple
time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten
dimensions. Its lift to M-theory, as well as its Einstein frame metric, are
singular in the sense that the geometry is geodesically incomplete and the
Riemann tensor diverges along a light-like subspace of codimension one. We
study this background as a model for a big bang type singularity in string
theory/M-theory. We construct the dual Matrix theory description in terms of a
(1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given
by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a
framework in which the physics of the singularity appears to be under control.Comment: 25 pages, LaTeX; v2: discussion of singularity of Einstein frame
metric added, references adde
Random walks and the Hagedorn transition
We study details of the approach to the Hagedorn temperature in string theory
in various static spacetime backgrounds. We show that the partition function
for a {\it single} string at finite temperature is the torus amplitude
restricted to unit winding around Euclidean time. We use the worldsheet path
integral to derive the statement that the the sum over random walks of the
thermal scalar near the Hagedorn transition is precisely the image under a
modular transformation of the sum over spatial configurations of a single
highly excited string. We compute the radius of gyration of thermally excited
strings in . We show that the winding mode indicates an
instability despite the AdS curvature at large radius, and that the negative
mass squared decreases with decreasing AdS radius, much like the type 0
tachyon. We add further arguments to statements by Barbon and Rabinovici, and
by Adams {\it et. al.}, that the Euclidean AdS black hole can thought of as a
condensate of the thermal scalar. We use this to provide circumstantial
evidence that the condensation of the thermal scalar decouples closed string
modes.Comment: 34 pages (7 of references), 5 figures. v2: Reference added, grant
acknowledgement added, typos correcte
A Matrix Model for the Null-Brane
The null-brane background is a simple smooth 1/2 BPS solution of string
theory. By tuning a parameter, this background develops a big crunch/big bang
type singularity. We construct the DLCQ description of this space-time in terms
of a Yang-Mills theory on a time-dependent space-time. Our dual Matrix
description provides a non-perturbative framework in which the fate of both
(null) time, and the string S-matrix can be studied.Comment: 26 pages, LaTeX; references adde
The UKIRT infrared deep sky survey early data release
This paper defines the UKIRT Infrared Deep Sky Survey (UKIDSS) Early Data Release (EDR). UKIDSS is a set of five large near-infrared surveys being undertaken with the United Kingdom Infrared Telescope Wide Field Camera (WFCAM). The programme began in 2005 May and has an expected duration of 7 yr. Each survey uses some or all of the broad-band filter complement ZY JHK. The EDR is the first public release of data to the European Southern Observatory (ESO) community. All worldwide releases occur after a delay of 18 months from the ESO release. The EDR provides a small sample data set, ∼50 deg2 (about 1 per cent of the whole of UKIDSS), that is a lower limit to the expected quality of future survey data releases. In addition, an EDR+ data set contains all EDR data plus extra data of similar quality, but for areas not observed in all of the required filters (amounting to ∼220 deg2). The first large data release, DR1, will occur in mid-2006. We provide details of the observational implementation, the data reduction, the astrometric and photometric calibration and the quality control procedures. We summarize the data coverage and quality (seeing, ellipticity, photometricity, depth) for each survey and give a brief guide to accessing the images and catalogues from the WFCAM Science Archive
- …
