13,512 research outputs found

    Magnetoconductivity in Weyl semimetals: Effect of chemical potential and temperature

    Full text link
    We present the detailed analyses of magneto-conductivities in a Weyl semimetal within Born and self-consistent Born approximations. In the presence of the charged impurities, the linear magnetoresistance can happen when the charge carriers are mainly from the zeroth (n=0) Landau level. Interestingly, the linear magnetoresistance is very robust against the change of temperature, as long as the charge carriers mainly come from the zeroth Landau level. We denote this parameter regime as the high-field regime. On the other hand, the linear magnetoresistance disappears once the charge carriers from the higher Landau levels can provide notable contributions. Our analysis indicates that the deviation from the linear magnetoresistance is mainly due to the deviation of the longitudinal conductivity from the 1/B1/B behavior. We found two important features of the self-energy approximation: 1. a dramatic jump of σxx\sigma_{xx}, when the n=1n=1 Landau level begins to contribute charge carriers, which is the beginning point of the middle-field regime, when decreasing the external magnetic field from high field; 2. In the low-field regime σxx\sigma_{xx} shows a B5/3B^{-5/3} behavior and results the magnetoresistance ρxx\rho_{xx} to show a B1/3B^{1/3} behavior. The detailed and careful numerical calculation indicates that the self-energy approximation (including both the Born and the self-consistent Born approximations) does not explain the recent experimental observation of linear magnetoresistance in Weyl semimetals.Comment: The accepted version. Extending the previous version by including the discussions of self-consistent Born approximatio

    Probing Non-Abelian Statistics in nu=12/5 Quantum Hall State

    Full text link
    The tunneling current and shot noise of the current between two Fractional Quantum Hall (FQH) edges in the ν=12/5 \nu=12/5 FQH state in electronic Mach-Zehnder interferometer are studied. It is shown that the tunneling current and shot noise can be used to probe the existence of k=3k=3 parafermion statistics in the ν=12/5 \nu=12/5 FQH state. More specifically, the dependence of the current on the Aharonov-Bohm flux in the Read-Rezayi state is asymmetric under the change of the sign of the applied voltage. This property is absent in the Abelian Laughlin states. Moreover the Fano factor can exceed 12.7 electron charges in the ν=12/5 \nu=12/5 FQH state . This number well exceeds the maximum possible Fano factor in all Laughlin states and the ν=5/2 \nu=5/2 Moore-Read state which was shown previously to be e e and 3.2e 3.2 e respectively.Comment: 10 pages, 6 figure

    Localized structures in Kagome lattices

    Full text link
    We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice

    Polarization and frequency disentanglement of photons via stochastic polarization mode dispersion

    Full text link
    We investigate the quantum decoherence of frequency and polarization variables of photons via polarization mode dispersion in optical fibers. By observing the analogy between the propagation equation of the field and the Schr\"odinger equation, we develop a master equation under Markovian approximation and analytically solve for the field density matrix. We identify distinct decay behaviors for the polarization and frequency variables for single-photon and two-photon states. For the single photon case, purity functions indicate that complete decoherence for each variable is possible only for infinite fiber length. For entangled two-photon states passing through separate fibers, entanglement associated with each variable can be completely destroyed after characteristic finite propagation distances. In particular, we show that frequency disentanglement is independent of the initial polarization status. For propagation of two photons in a common fiber, the evolution of a polarization singlet state is addressed. We show that while complete polarization disentanglement occurs at a finite propagation distance, frequency entanglement could survive at any finite distance for gaussian states.Comment: 2 figure
    corecore