21 research outputs found

    Proteome changes in the plasma of Papilio xuthus (Lepidoptera: Papilionidae): effect of parasitization by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae)*

    No full text
    Although the biochemical dissection of parasitoid-host interactions is becoming well characterized, the molecular knowledge concerning them is minimal. In order to understand the molecular bases of the host immune response to parasitoid attack, we explored the response of Papilio xuthus parasitized by the endoparasitic wasp Pteromalus puparum using proteomic approach. By examining the differential expression of plasma proteins in the parasitized and unparasitized host pupae by two-dimensional (2D) electrophoresis, 16 proteins were found to vary in relation to parasitization compared with unparasitized control samples. All of them were submitted to identification by mass spectrometry coupled with a database search. The modulated proteins were found to fall into the following functional groups: humoral or cellular immunity, detoxification, energy metabolism, and others. This study contributes insights into the molecular mechanism of the relationships between parasitoids and their host insects

    Proteome changes in the plasma of Pieris rapae parasitized by the endoparasitoid wasp Pteromalus puparum *

    No full text
    Parasitism by the endoparasitoid wasp Pteromalus puparum causes alterations in the plasma proteins of Pieris rapae. Analysis of plasma proteins using a proteomic approach showed that seven proteins were differentially expressed in the host pupae after 24-h parasitism. They were masquerade-like serine proteinase homolog (MSPH), enolase (Eno), bilin-binding protein (BBP), imaginal disc growth factor (IDGF), ornithine decarboxylase (ODC), cellular retinoic acid binding protein (CRABP), and one unknown function protein. The full length cDNA sequences of MSPH, Eno, and BBP were successfully cloned using rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that the transcript levels of MSPH and BBP in the fat bodies of host pupae were inducible in response to the parasitism and their variations were consistent with translational changes of these genes after parasitism, while the transcript levels of Eno and IDGF were not affected by parasitism. This study will contribute to the better understanding of the molecular bases of parasitoid-induced host alterations associated with innate immune responses, detoxification, and energy metabolism
    corecore