58 research outputs found
Semiclassical Quantization for the Spherically Symmetric Systems under an Aharonov-Bohm magnetic flux
The semiclassical quantization rule is derived for a system with a
spherically symmetric potential and an
Aharonov-Bohm magnetic flux. Numerical results are presented and compared with
known results for models with . It is shown that the
results provided by our method are in good agreement with previous results. One
expects that the semiclassical quantization rule shown in this paper will
provide a good approximation for all principle quantum number even the rule is
derived in the large principal quantum number limit . We also discuss
the power parameter dependence of the energy spectra pattern in this
paper.Comment: 13 pages, 4 figures, some typos correcte
Electromagnetic field angular momentum in condensed matter systems
Various electromagnetic systems can carry an angular momentum in their {\bf
E} and {\bf B} fields. The electromagnetic field angular momentum (EMAM) of
these systems can combine with the spin angular momentum to give composite
fermions or composite bosons. In this paper we examine the possiblity that an
EMAM could provide an explanation of the fractional quantum Hall effect (FQHE)
which is complimentary to the Chern-Simons explanation. We also examine a toy
model of a non-BCS superconductor (e.g. high superconductors) in terms of
an EMAM. The models presented give a common, simple picture of these two
systems in terms of an EMAM. The presence of an EMAM in these systems might be
tested through the observation of the decay modes of a charged, spin zero
unstable particle inside one of these systems.Comment: 17 pages, no figures, to be published in Phys. Rev.
Quasi-Fermi Distribution and Resonant Tunneling of Quasiparticles with Fractional Charges
We study the resonant tunneling of quasiparticles through an impurity between
the edges of a Fractional Quantum Hall sample. We show that the one-particle
momentum distribution of fractionally charged edge quasiparticles has a
quasi-Fermi character. The density of states near the quasi-Fermi energy at
zero temperature is singular due to the statistical interaction of
quasiparticles. Another effect of this interaction is a new selection rule for
the resonant tunneling of fractionally charged quasiparticles: the resonance is
suppressed unless an integer number of {\em electrons} occupies the impurity.
It allows a new explanation of the scaling behavior observed in the mesoscopic
fluctuations of the conductivity in the FQHE.Comment: 7 pages, REVTeX 3.0, Preprint SU-ITP-93-1
Invariant structure of the hierarchy theory of fractional quantum Hall states with spin
We describe the invariant structure common to abelian fractional quantum Hall
systems with spin. It appears in a generalization of the lattice description of
the polarized hierarchy that encompasses both partially polarized and
unpolarized ground state systems. We formulate, using the spin-charge
decomposition, conditions that should be satisfied so that the description is
SU(2) invariant. In the case of the spin- singlet hierarchy construction, we
find that there are as many SU(2) symmetries as there are levels in the
construction. We show the existence of a spin and charge lattice for the
systems with spin. The ``gluing'' of the charge and spin degrees of freedom in
their bulk is described by the gluing theory of lattices.Comment: 21 pages, LaTex, Submitted to Phys. Rev.
Magnetization and Level Statistics at Quantum Hall Liquid-Insulator Transition in the Lattice Model
Statistics of level spacing and magnetization are studied for the phase
diagram of the integer quantum Hall effect in a 2D finite lattice model with
Anderson disorder.Comment: 4 pages, 6 figure
Integer quantum Hall effect for hard-core bosons and a failure of bosonic Chern-Simons mean-field theories for electrons at half-filled Landau level
Field-theoretical methods have been shown to be useful in constructing simple
effective theories for two-dimensional (2D) systems. These effective theories
are usually studied by perturbing around a mean-field approximation, so the
question whether such an approximation is meaningful arises immediately. We
here study 2D interacting electrons in a half-filled Landau level mapped onto
interacting hard-core bosons in a magnetic field. We argue that an interacting
hard-core boson system in a uniform external field such that there is one flux
quantum per particle (unit filling) exhibits an integer quantum Hall effect. As
a consequence, the mean-field approximation for mapping electrons at
half-filling to a boson system at integer filling fails.Comment: 13 pages latex with revtex. To be published in Phys. Rev.
Thermodynamics of an Anyon System
We examine the thermal behavior of a relativistic anyon system, dynamically
realized by coupling a charged massive spin-1 field to a Chern-Simons gauge
field. We calculate the free energy (to the next leading order), from which all
thermodynamic quantities can be determined. As examples, the dependence of
particle density on the anyon statistics and the anyon anti-anyon interference
in the ideal gas are exhibited. We also calculate two and three-point
correlation functions, and uncover certain physical features of the system in
thermal equilibrium.Comment: 18 pages; in latex; to be published in Phys. Rev.
Weak localization of disordered quasiparticles in the mixed superconducting state
Starting from a random matrix model, we construct the low-energy effective
field theory for the noninteracting gas of quasiparticles of a disordered
superconductor in the mixed state. The theory is a nonlinear sigma model, with
the order parameter field being a supermatrix whose form is determined solely
on symmetry grounds. The weak localization correction to the field-axis thermal
conductivity is computed for a dilute array of s-wave vortices near the lower
critical field H_c1. We propose that weak localization effects, cut off at low
temperatures by the Zeeman splitting, are responsible for the field dependence
of the thermal conductivity seen in recent high-T_c experiments by Aubin et al.Comment: RevTex, 8 pages, 1 eps figure, typos correcte
Energy, interaction, and photoluminescence of spin-reversed quasielectrons in fractional quantum Hall systems
The energy and photoluminescence spectra of a two-dimensional electron gas in
the fractional quantum Hall regime are studied. The single-particle properties
of reversed-spin quasielectrons (QE's) as well as the
pseudopotentials of their interaction with one another and with Laughlin
quasielectrons (QE's) and quasiholes (QH's) are calculated. Based on the
short-range character of the QE--QE and QE--QE
repulsion, the partially unpolarized incompressible states at the filling
factors and are postulated within Haldane's
hierarchy scheme. To describe photoluminescence, the family of bound
QE states of a valence hole and QE's are
predicted in analogy to the found earlier fractionally charged excitons
QE. The binding energy and optical selection rules for both families are
compared. The QE is found radiative in contrast to the dark QE,
and the QE is found non-radiative in contrast to the bright
QE.Comment: 9 pages, 6 figure
- …