2,898 research outputs found

    Magnetic groundstate and Fermi surface of bcc Eu

    Full text link
    Using spin-spiral technique within the full potential linearized augmented-plane-waves (LAPW) electronic structure method we investigate the magnon spectrum and N\'eel temperature of bcc Eu. Ground state corresponding to an incommensurate spin-spiral is obtained in agreement with experiment and previous calculations. We demonstrate that the magnetic coupling is primarily through the intra-atomic f−sf-s and f−df-d exchange and Ruderman-Kittel-Kasuya-Yosida mechanism. We show that the existence of this spin-spiral is closely connected to a nesting feature of the Fermi surface which was not noticed before.Comment: 6 pages 8 figure

    Bell inequality with an arbitrary number of settings and its applications

    Full text link
    Based on a geometrical argument introduced by Zukowski, a new multisetting Bell inequality is derived, for the scenario in which many parties make measurements on two-level systems. This generalizes and unifies some previous results. Moreover, a necessary and sufficient condition for the violation of this inequality is presented. It turns out that the class of non-separable states which do not admit local realistic description is extended when compared to the two-setting inequalities. However, supporting the conjecture of Peres, quantum states with positive partial transposes with respect to all subsystems do not violate the inequality. Additionally, we follow a general link between Bell inequalities and communication complexity problems, and present a quantum protocol linked with the inequality, which outperforms the best classical protocol.Comment: 8 pages, To appear in Phys. Rev.

    Rotational invariance as an additional constraint on local realism

    Full text link
    Rotational invariance of physical laws is a generally accepted principle. We show that it leads to an additional external constraint on local realistic models of physical phenomena involving measurements of multiparticle spin 1/2 correlations. This new constraint rules out such models even in some situations in which standard Bell inequalities allow for explicit construction of such models. The whole analysis is performed without any additional assumptions on the form of local realistic models.Comment: 4 page

    ProFunc: a server for predicting protein function from 3D structure

    Get PDF
    ProFunc () is a web server for predicting the likely function of proteins whose 3D structure is known but whose function is not. Users submit the coordinates of their structure to the server in PDB format. ProFunc makes use of both existing and novel methods to analyse the protein's sequence and structure identifying functional motifs or close relationships to functionally characterized proteins. A summary of the analyses provides an at-a-glance view of what each of the different methods has found. More detailed results are available on separate pages. Often where one method has failed to find anything useful another may be more forthcoming. The server is likely to be of most use in structural genomics where a large proportion of the proteins whose structures are solved are of hypothetical proteins of unknown function. However, it may also find use in a comparative analysis of members of large protein families. It provides a convenient compendium of sequence and structural information that often hold vital functional clues to be followed up experimentally

    Nonclassicality of pure two-qutrit entangled states

    Full text link
    We report an exhaustive numerical analysis of violations of local realism by two qutrits in all possible pure entangled states. In Bell type experiments we allow any pairs of local unitary U(3) transformations to define the measurement bases. Surprisingly, Schmidt rank-2 states, resembling pairs of maximally entangled qubits, lead to the most noise-robust violations of local realism. The phenomenon seems to be even more pronounced for four and five dimensional systems, for which we tested a few interesting examples.Comment: 6 pages, journal versio

    Salient signatures of entanglement in the surrounding environment

    Full text link
    We develop a model in which presence of entanglement in a quantum system can be confirmed through coarse observations of the environment surrounding the system. This counter-intuitive effect becomes possible when interaction between the system and its environment is proportional to an observable being an entanglement witness. While presenting intuitive examples we show that: i) a cloud of an ideal gas, when subject to a linear potential coupled with the entanglement witness, accelerates in the direction dictated by the sign of the witness; ii) when the environment is a radiation field, the direction of dielectric polarization depends on the presence of entanglement; iii) quadratures of electromagnetic field in a cavity coupled with two qubits (or a four-level atom) are displaced in the same manner

    Mapping the Constrained Coding Regions in the human genome to their corresponding proteins

    Get PDF
    Constrained Coding Regions (CCRs) in the human genome have been derived from DNA sequencing data of large cohorts of healthy control populations, available in the Genome Aggregation Database (gnomAD) [1]. They identify regions depleted of protein-changing variants and thus identify segments of the genome that have been constrained during human evolution. By mapping these DNA-defined regions from genomic coordinates onto the corresponding protein positions and combining this information with protein annotations, we have explored the distribution of CCRs and compared their co-occurrence with different protein functional features, previously annotated at the amino acid level in public databases. As expected, our results reveal that functional amino acids involved in interactions with DNA/RNA, protein-protein contacts and catalytic sites are the protein features most likely to be highly constrained for variation in the control population. More surprisingly, we also found that linear motifs, linear interacting peptides (LIPs), disorder-order transitions upon binding with other protein partners and liquid-liquid phase separating (LLPS) regions are also strongly associated with high constraint for variability. We also compared intra-species constraints in the human CCRs with inter-species conservation and functional residues to explore how such CCRs may contribute to the analysis of protein variants. As has been previously observed, CCRs are only weakly correlated with conservation, suggesting that intraspecies constraints complement interspecies conservation and can provide more information to interpret variant effects

    Do all pure entangled states violate Bell's inequalities for correlation functions?

    Full text link
    Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.Comment: 4 pages, journal versio

    Unbounded violation of tripartite Bell inequalities

    Get PDF
    We prove that there are tripartite quantum states (constructed from random unitaries) that can lead to arbitrarily large violations of Bell inequalities for dichotomic observables. As a consequence these states can withstand an arbitrary amount of white noise before they admit a description within a local hidden variable model. This is in sharp contrast with the bipartite case, where all violations are bounded by Grothendieck's constant. We will discuss the possibility of determining the Hilbert space dimension from the obtained violation and comment on implications for communication complexity theory. Moreover, we show that the violation obtained from generalized GHZ states is always bounded so that, in contrast to many other contexts, GHZ states do in this case not lead to extremal quantum correlations. The results are based on tools from the theories of operator spaces and tensor norms which we exploit to prove the existence of bounded but not completely bounded trilinear forms from commutative C*-algebras.Comment: Substantial changes in the presentation to make the paper more accessible for a non-specialized reade

    FLORA: a novel method to predict protein function from structure in diverse superfamilies

    Get PDF
    Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (α, ÎČ, αÎČ) and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues
    • 

    corecore