15,389 research outputs found

    CDM, Feedback and the Hubble Sequence

    Get PDF
    We have performed TreeSPH simulations of galaxy formation in a standard LCDM cosmology, including effects of star formation, energetic stellar feedback processes and a meta-galactic UV field, and obtain a mix of disk, lenticular and elliptical galaxies. The disk galaxies are deficient in angular momentum by only about a factor of two compared to observed disk galaxies. The stellar disks have approximately exponential surface density profiles, and those of the bulges range from exponential to r^{1/4}, as observed. The bulge-to-disk ratios of the disk galaxies are consistent with observations and likewise are their integrated B-V colours, which have been calculated using stellar population synthesis techniques. Furthermore, we can match the observed I-band Tully-Fisher (TF) relation, provided that the mass-to-light ratio of disk galaxies, (M/L_I), is about 0.8. The ellipticals and lenticulars have approximately r^{1/4} stellar surface density profiles, are dominated by non-disklike kinematics and flattened due to non-isotropic stellar velocity distributions, again consistent with observations.Comment: 6 pages, incl. 4 figs. To appear in the proceedings of the EuroConference "The Evolution of Galaxies: II - Basic Building Blocks", Ile de La Reunion (France), 16-21 October 2001 (Slightly updated version). A much more comprehensive paper about this work with links to pictures of some of the galaxies can be found at http://babbage.sissa.it/abs/astro-ph/020436

    A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios

    Full text link
    We re-analyse the kinematics of the system of blue horizontal branch field (BHBF) stars in the Galactic halo (in particular the outer halo), fitting the kinematics with the model of radial and tangential velocity dispersions in the halo as a function of galactocentric distance r proposed by Sommer-Larsen, Flynn & Christensen (1994), using a much larger sample (almost 700) of BHBF stars. The basic result is that the character of the stellar halo velocity ellipsoid changes markedly from radial anisotropy at the sun to tangential anisotropy in the outer parts of the Galactic halo (r greater than approx 20 kpc). Specifically, the radial component of the stellar halo's velocity ellipsoid decreases fairly rapidly beyond the solar circle, from approx 140 +/- 10 km/s at the sun, to an asymptotic value of 89 +/- 19 km/s at large r. The rapid decrease in the radial velocity dispersion is matched by an increase in the tangential velocity dispersion, with increasing r. Our results may indicate that the Galaxy formed hierarchically (partly or fully) through merging of smaller subsystems - the 'bottom-up' galaxy formation scenario, which for quite a while has been favoured by most theorists and recently also has been given some observational credibility by HST observations of a potential group of small galaxies, at high redshift, possibly in the process of merging to a larger galaxy (Pascarelle et al 1996).Comment: Latex, 16 pages. 2 postscript figures. Submitted to the Astrophysical Journal. also available at http://astro.utu.fi/~cflynn/outerhalo.htm

    Continuous star cluster formation in the spiral NGC 45

    Full text link
    We determined ages for 52 star clusters with masses < 10^6 solar masses in the low surface brightness spiral galaxy NGC 45. Four of these candidates are old globular clusters located in the bulge. The remaining ones span a large age range. The cluster ages suggest a continuous star/cluster formation history without evidence for bursts, consistent with the galaxy being located in a relatively unperturbed environment in the outskirts of the Sculptor group.Comment: 4 pages, 3 figures. To appear in "Island Universes - Structure and Evolution of Disk Galaxies", Terschelling (Netherlands), July 200

    Assessing the effects of repeated handling on physiology and condition of semi-precocial nestlings

    Get PDF
    Repeated exposure to elevated levels of glucocorticoids during development can have long-term detrimental effects on survival and fitness, potentially associated with increased telomere attrition. Nestling birds are regularly handled for ecological research, yet few authors have considered the potential for handling-induced stress to influence hormonally-mediated phenotypic development or bias interpretations of subsequent focal measurements. We experimentally manipulated the handling experience of the semi-precocial nestlings of European Storm Petrel Hydrobates pelagicus to simulate handling in a typical field study and examined cumulative effects on physiology and condition in late postnatal development. Neither baseline corticosterone (the primary glucocorticoid in birds), telomere length nor body condition varied with the number of handling episodes. The absence of a response could be explained if Storm Petrels did not perceive handling to be stressful or if there is dissociation of the hypothalamic-pituitary-adrenal axis from stressful stimuli in early life. Eliciting a response to a stressor may be maladaptive for cavity-dwelling young that are unable to escape or defend themselves. Furthermore, avoiding elevated overall glucocorticoid exposure may be particularly important in a long-lived species, in which accelerated early-life telomere erosion could impact negatively upon longevity. We propose that the level of colony-wide disturbance induced by investigator handling of young could be important in underlining species-specific responses. Storm Petrel nestlings appear unresponsive to investigator handling within the limits of handling in a typical field study and handling at this level should not bias physiological and morphological measurements

    Towards a Notion of Distributed Time for Petri Nets

    No full text
    We set the ground for research on a timed extension of Petri nets where time parameters are associated with tokens and arcs carry constraints that qualify the age of tokens required for enabling. The novelty is that, rather than a single global clock, we use a set of unrelated clocks --- possibly one per place --- allowing a local timing as well as distributed time synchronisation. We give a formal definition of the model and investigate properties of local versus global timing, including decidability issues and notions of processes of the respective models

    Young and intermediate-age massive star clusters

    Full text link
    An overview of our current understanding of the formation and evolution of star clusters is given, with main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a few percent of star formation occurs in clusters that remain bound, although it is not yet clear if this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on timescales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (> 10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5 Msun. In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x 10^6 Msun. The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. PDFLaTeX, requires rspublic.cls style fil

    Structural Parameters and Dynamical Masses for Globular Clusters in M33

    Full text link
    Using high-dispersion spectra from the HIRES echelle spectrograph on the Keck I telescope, we measure velocity dispersions for 4 globular clusters in M33. Combining the velocity dispersions with integrated photometry and structural parameters derived from King-Michie model fits to WFPC2 images, we obtain mass-to-light ratios for the clusters. The mean value is M/LV = 1.53 +/- 0.18, very similar to the M/LV of Milky Way and M31 globular clusters. The M33 clusters also fit very well onto the fundamental plane and binding energy - luminosity relations derived for Milky Way GCs. Dynamically and structurally, the four M33 clusters studied here appear virtually identical to Milky Way and M31 GCs.Comment: 25 pages, including 7 figures and 4 tables. Accepted for AJ, Nov 200
    • 

    corecore