7,574 research outputs found

    Attractive Fermi gases with unequal spin populations in highly elongated traps

    Full text link
    We investigate two-component attractive Fermi gases with imbalanced spin populations in trapped one dimensional configurations. The ground state properties are determined within local density approximation, starting from the exact Bethe-ansatz equations for the homogeneous case. We predict that the atoms are distributed according to a two-shell structure: a partially polarized phase in the center of the trap and either a fully paired or a fully polarized phase in the wings. The partially polarized core is expected to be a superfluid of the FFLO type. The size of the cloud as well as the critical spin polarization needed to suppress the fully paired shell, are calculated as a function of the coupling strength.Comment: Final accepted versio

    Finite-momentum Bose-Einstein condensates in shaken 2D square optical lattices

    Full text link
    We consider ultracold bosons in a 2D square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter. It is therefore necessary to account for higher-order hopping terms, which are renormalized differently by the shaking, and introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentum condensates, with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott-insulator and the different superfluid phases, and present the time-of-flight images expected to be observed experimentally. Our results open up new possibilities for the realization of bosonic analogs of the FFLO phase describing inhomogeneous superconductivity.Comment: 7 pages, 7 figure

    Competition between Normal Superfluidity and Larkin-Ovchinnikov Phases of Polarized Fermi Gases in Elongated Traps

    Get PDF
    By applying the recently proposed antisymmetric superfluid local density approximation (ASLDA) to strongly interacting polarized atomic gases at unitarity in very elongated traps, we find families of Larkin-Ovchinnikov (LO) type of solutions with prominent transversal oscillation of pairing potential. These LO states coexist with a superfluid state having a smooth pairing potential. We suggest that the LO phase could be accessible experimentally by increasing adiabatically the trap aspect ratio. We show that the local asymmetry effects contained in ASLDA do not support a deformed superfluid core predicted by previous Bogoliubov-de Gennes treatments.Comment: 4 pages, 4 figures; revision; accepted for publication in Phys.Rev.A (Rapid Communication

    Interplay between phase defects and spin polarization in the specific heat of the spin density wave compound (TMTTF)_2Br in a magnetic field

    Full text link
    Equilibrium heat relaxation experiments provide evidence that the ground state of the commensurate spin density wave (SDW) compound (TMTTF)2_2Br after the application of a sufficient magnetic field is different from the conventional ground state. The experiments are interpreted on the basis of the local model of strong pinning as the deconfinement of soliton-antisoliton pairs triggered by the Zeeman coupling to spin degrees of freedom, resulting in a magnetic field induced density wave glass for the spin carrying phase configuration.Comment: 4 pages, 5 figure

    Resonant pairing between Fermions with unequal masses

    Full text link
    We study the pairing between Fermions of different masses, especially at the unitary limit. At equal populations, the thermodynamic properties are identical with the equal mass case provided an appropriate rescaling is made. At unequal populations, for sufficiently light majority species, the system does not phase separate. For sufficiently heavy majority species, the phase separated normal phase have a density larger than that of the superfluid. For atoms in harmonic traps, the density profiles for unequal mass Fermions can be drastically different from their equal-mass counterparts.Comment: 10 pages, 4 figure

    Integral Field Spectroscopy of High-Redshift Star Forming Galaxies with Laser Guided Adaptive Optics: Evidence for Dispersion-Dominated Kinematics

    Get PDF
    We present early results from an ongoing study of the kinematic structure of star-forming galaxies at redshift z ~ 2 - 3 using integral-field spectroscopy of rest-frame optical nebular emission lines in combination with Keck laser guide star adaptive optics (LGSAO). We show kinematic maps of 3 target galaxies Q1623-BX453, Q0449-BX93, and DSF2237a-C2 located at redshifts z = 2.1820, 2.0067, and 3.3172 respectively, each of which is well-resolved with a PSF measuring approximately 0.11 - 0.15 arcsec (~ 900 - 1200 pc at z ~ 2-3) after cosmetic smoothing. Neither galaxy at z ~ 2 exhibits substantial kinematic structure on scales >~ 30 km/s; both are instead consistent with largely dispersion-dominated velocity fields with sigma ~ 80 km/s along any given line of sight into the galaxy. In contrast, DSF2237a-C2 presents a well-resolved gradient in velocity over a distance of ~ 4 kpc with peak-to-peak amplitude of 140 km/s. It is unlikely that DSF2237a-C2 represents a dynamically cold rotating disk of ionized gas as the local velocity dispersion of the galaxy (sigma = 79 km/s) is comparable to the observed shear. Using extant multi-wavelength spectroscopy and photometry we relate these kinematic data to physical properties such as stellar mass, gas fraction, star formation rate, and outflow kinematics and consider the applicability of current galaxy formation models.[Abridged]Comment: 19 pages, 10 figures (5 color); accepted for publication in ApJ. Version with full-resolution figures is available at http://www.astro.caltech.edu/~drlaw/Papers/OSIRIS_data1.pd

    Stability of the Breached Pair State for a Two-species Fermionic System in the Presence of Feshbach Resonance

    Full text link
    We investigate the phenomenon of fermionic pairing with mismatched Fermi surfaces in a two-species system in the presence of Feshbach resonance, where the resonantly-paired fermions combine to form bosonic molecules. We observe that the Feshbach parameters control the critical temperature of the gapped BCS superfluid state, and also determine the range over which a gapless breached pair state may exist. Demanding the positivity of the superfluid density, it is shown that although a breached pair state with two Fermi surfaces is always unstable, its single Fermi-surface counterpart can be stable if the chemical potentials of the two pairing species have opposite signs. This condition is satisfied only over a narrow region in the BEC side, characterized by an upper and a lower limit for the magnetic field. We estimate these limits for a mixture of two hyperfine states of 6^6Li using recent experimental data.Comment: 14 pages,5 figure

    Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance

    Full text link
    We study the emergence of itinerant ferromagnetism in an ultra-cold atomic gas with a variable mass ratio between the up and down spin species. Mass imbalance breaks the SU(2) spin symmetry leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Secondly, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation of a ferromagnetic state. Finally, we study the time dependent formation of the ferromagnetic phase following a quench in the interaction strength

    Kondo Breakdown and Hybridization Fluctuations in the Kondo-Heisenberg Lattice

    Full text link
    We study the deconfined quantum critical point of the Kondo-Heisenberg lattice in three dimensions using a fermionic representation for the localized spins. The mean-field phase diagram exhibits a zero temperature quantum critical point separating a spin liquid phase where the hybridization vanishes and a Kondo phase where it does not. Two solutions can be stabilized in the Kondo phase, namely a uniform hybridization when the band masses of the conduction electrons and the spinons have the same sign, and a modulated one when they have opposite sign. For the uniform case, we show that above a very small temperature scale, the critical fluctuations associated with the vanishing hybridization have dynamical exponent z=3, giving rise to a resistivity that has a T log T behavior. We also find that the specific heat coefficient diverges logarithmically in temperature, as observed in a number of heavy fermion metals.Comment: new Figure 2, new results on spin susceptibility, some minor changes to tex

    Superfluid stability in BEC-BCS crossover

    Full text link
    We consider a dilute atomic gas of two species of fermions with unequal concentrations under a Feshbach resonance. We find that the system can have distinct properties due to the unbound fermions. The uniform state is stable only when either (a) beyond a critical coupling strength, where it is a gapless superfluid, or (b) when the coupling strength is sufficiently weak, where it is a normal Fermi gas mixture. Phase transition(s) must therefore occur when the resonance is crossed.Comment: 4 pages, 4 figure
    • …
    corecore