34 research outputs found

    The Periodic Instability of Diameter of ZnO Nanowires via a Self-oscillatory Mechanism

    Get PDF
    ZnO nanowires with a periodic instability of diameter were successfully prepared by a thermal physical vapor deposition method. The morphology of ZnO nanowires was investigated by SEM. SEM shows ZnO possess periodic bead-like structure. The instability only appears when the diameter of ZnO nanowires is small. The kinetics and mechanism of Instability was discussed at length. The appearance of the instability is due to negative feed-back mechanism under certain experimental conditions (crystallization temperature, vapor supersaturation, etc)

    ZnO nanowalls

    No full text

    Influence of storage time on DNA of Chlamydia trachomatis, Ureaplasma urealyticum, and Neisseria gonorrhoeae for accurate detection by quantitative real-time polymerase chain reaction

    No full text
    The shipment and storage conditions of clinical samples pose a major challenge to the detection accuracy of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and Ureaplasma urealyticum (UU) when using quantitative real-time polymerase chain reaction (qRT-PCR). The aim of the present study was to explore the influence of storage time at 4°C on the DNA of these pathogens and its effect on their detection by qRT-PCR. CT, NG, and UU positive genital swabs from 70 patients were collected, and DNA of all samples were extracted and divided into eight aliquots. One aliquot was immediately analyzed with qRT-PCR to assess the initial pathogen load, whereas the remaining samples were stored at 4°C and analyzed after 1, 2, 3, 7, 14, 21, and 28 days. No significant differences in CT, NG, and UU DNA loads were observed between baseline (day 0) and the subsequent time points (days 1, 2, 3, 7, 14, 21, and 28) in any of the 70 samples. Although a slight increase in DNA levels was observed at day 28 compared to day 0, paired sample t-test results revealed no significant differences between the mean DNA levels at different time points following storage at 4°C (all P>0.05). Overall, the CT, UU, and NG DNA loads from all genital swab samples were stable at 4°C over a 28-day period

    Zinc oxide films prepared by sol–gel spin coating technique

    No full text
    Zinc oxide (ZnO) thin films and micro- and nanostructures are very promising candidates for novel applications in emerging thin-film transistors, solar cells, sensors and optoelectronic devices. In this paper, a low-cost sol-gel spin coating technique was used to fabricate ZnO films on glass substrates. The sol-gel fabrication process of the ZnO films is described. The influence of precursor concentration on the material properties of the ZnO films was investigated. Atomic force microscopy and X-ray diffractometry were employed to examine the structural properties of the ZnO films. The optical properties of the ZnO films were characterized with ultraviolet-visible spectroscopy. The experimental results reveal that the precursor concentration in the sol-gel spin coating process exerts a strong influence on the properties of the ZnO films. The effects of the precursor concentration are discussed. Document Type: Articl
    corecore