4,396 research outputs found

    3,5-Diiodo-L-thyronine modulates the expression of genes of lipid metabolism in a rat model of fatty liver.

    Get PDF
    Recent reports demonstrated that 3,5-diiodo-l-thyronine (T(2)) was able to prevent lipid accumulation in the liver of rats fed a high-fat diet (HFD). In this study, we investigated how the rat liver responds to HFD and T(2) treatment by assessing the transcription profiles of some genes involved in the pathways of lipid metabolism: oxidation, storage and secretion. The mRNA levels of the peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ), and of their target enzymes acyl-CoA oxidase and stearoyl-CoA desaturase were evaluated by real-time RT-PCR. Moreover, the expression of the adipose triglyceride lipase involved in lipid mobilisation, of the main PAT proteins acting in lipid droplet (LD) turnover, and of apoprotein B (apo B), the major protein component of very low-density lipoproteins (VLDLs) were analysed. Overall, our data demonstrated that T(2) administration to HFD rats counteracts most of the hepatic transcriptional changes that occurred in response to the excess exogenous fat. In particular, our results suggest that T(2) may prevent the pathways leading to lipid storage in LDs, promote the processes of lipid mobilisation from LDs and secretion as VLDL, in addition to the stimulation of pathways of lipid oxidation. In conclusion, our findings might give an insight into the mechanisms underlying the anti-steatotic ability of T(2) and help to define the potential therapeutic role of T(2) for preventing or treating liver steatosis

    Both 3,3′,5-triiodothyronine and 3,5-diodo-L-thyronine are able to repair mitochondrial DNA damage but by different mechanisms

    Get PDF
    This study evaluated the effect of 3,5-diiodo-L-thyronine (T2) and 3,5,3′-triiodo-L-thyronine (T3) on rat liver mitochondrial DNA (mtDNA) oxidative damage and repair and to investigate their ability to induce protective effects against oxidative stress. Control rats, rats receiving a daily injection of T2 (N+T2) for 1 week and rats receiving a daily injection of T3 (N+T3) for 1 week, were used throughout the study. In the liver, mtDNA oxidative damage [by measuring mtDNA lesion frequency and expression of DNA polymerase γ (POLG)], mtDNA copy number, mitochondrial biogenesis [by measuring amplification of mtDNA/nDNA and expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α)], and oxidative stress [by measuring serum levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG)] were detected. T2 reduces mtDNA lesion frequency and increases the expression of POLG, and it does not change the mtDNA copy number, the expression of PGC-1α, or the serum levels of 8-OHdG. Therefore, T2, by stimulating the major mtDNA repair enzyme, maintains genomic integrity. Similar to T2, T3 decreases mtDNA lesion frequency but increases the serum levels of 8-OHdG, and it decreases the expression of POLG. Moreover, as expected, T3 increases the mtDNA copy number and the expression of PGC-1α. Thus, in T3-treated rats, the increase of 8-OHdG and the decrease of POLG indicate that there is increased oxidative damage and that the decreased mtDNA lesion frequency might be a consequence of increased mitochondrial biogenesis. These data demonstrate that both T2 and T3 are able to decrease in the liver mtDNA oxidative damage, but they act via different mechanisms

    Mild Endurance Exercise during Fasting Increases Gastrocnemius Muscle and Prefrontal Cortex Thyroid Hormone Levels through Differential BHB and BCAA-Mediated BDNF-mTOR Signaling in Rats

    Get PDF
    Mild endurance exercise has been shown to compensate for declined muscle quality and may positively affect the brain under conditions of energy restriction. Whether this involves brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) activation in relation to central and peripheral tissue levels of associated factors such as beta hydroxy butyrate (BHB), branched-chain amino acids (BCAA) and thyroid hormone (T3) has not been studied. Thus, a subset of male Wistar rats housed at thermoneutrality that were fed or fasted was submitted to 30-min-mild treadmill exercise bouts (five in total, twice daily, 15 m/min, 0â—¦ inclination) over a period of 66 h. Prefrontal cortex and gastrocnemius muscle BHB, BCAA, and thyroid hormone were measured by LC-MS/MS analysis and were related to BDNF and mammalian target of rapamycin (mTOR) signaling. In gastrocnemius muscle, mild endurance exercise during fasting maintained the fasting-induced elevated BHB levels and BDNF-CREB activity and unlocked the downstream Akt-mTORC1 pathway associated with increased tissue BCAA. Consequently, deiodinase 3 mRNA levels decreased whereas increased phosphorylation of the mTORC2 target FOXO1 was associated with increased deiodinase 2 mRNA levels, accounting for the increased T3 tissue levels. These events were related to increased expression of CREB and T3 target genes beneficial for muscle quality previously observed in this condition. In rat L6 myoblasts, BHB directly induced BDNF transcription and maturation. Mild endurance exercise during fasting did not increase prefrontal cortex BHB levels nor was BDNF activated, whereas increased leucine levels were associated with Akt-independent increased phosphorylation of the mTORC1 target P70S6K. The associated increased T3 levels modulated the expression of known T3-target genes involved in brain tissue maintenance. Our observation that mild endurance exercise modulates BDNF, mTOR and T3 during fasting provides molecular clues to explain the observed beneficial effects of mild endurance exercise in settings of energy restriction

    Altered Mitochondrial Quality Control in Rats with Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) Induced by High-Fat Feeding

    Get PDF
    Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined as the presence of hepatic steatosis in addition to one of three metabolic conditions: overweight/obesity, type 2 diabetes mellitus, or metabolic dysregulation. Chronic exposure to excess dietary fatty acids may cause hepatic steatosis and metabolic disturbances. The alteration of the quality of mitochondria is one of the factors that could contribute to the metabolic dysregulation of MAFDL. This study was designed to determine, in a rodent model of MAFLD, the effects of a long-term high-fat diet (HFD) on some hepatic processes that characterize mitochondrial quality control, such as biogenesis, dynamics, and mitophagy. To mimic the human manifestation of MAFLD, the rats were exposed to both an HFD and a housing temperature within the rat thermoneutral zone (28–30◦C). After 14 weeks of the HFD, the rats showed significant fat deposition and liver steatosis. Concomitantly, some important factors related to the hepatic mitochondrial quality were markedly affected, such as increased mitochondrial reactive oxygen species (ROS) production and mitochondrial DNA (mtDNA) damage; reduced mitochondrial biogenesis, mtDNA copy numbers, mtDNA repair, and mitochondrial fusion. HFD-fed rats also showed an impaired mitophagy. Overall, the obtained data shed new light on the network of different processes contributing to the failure of mitochondrial quality control as a central event for mitochondrial dysregulation in MAFLD
    • …
    corecore