1,805 research outputs found

    Quantum Langevin model for exoergic ion-molecule reactions and inelastic processes

    Full text link
    We presents a fully quantal version of the Langevin model for the total rate of exoergic ion-molecule reactions or inelastic processes. The model, which is derived from a rigorous multichannel quantum-defect formulation of bimolecular processes, agrees with the classical Langevin model at sufficiently high temperatures. It also gives the first analytic description of ion-molecule reactions and inelastic processes in the ultracold regime where the quantum nature of the relative motion between the reactants becomes important.Comment: 5 pages, 3 figure

    Universal model for exoergic bimolecular reactions and inelastic processes

    Full text link
    From a rigorous multichannel quantum-defect formulation of bimolecular processes, we derive a fully quantal and analytic model for the total rate of exoergic bimolecular reactions and/or inelastic processes that is applicable over a wide range of temperatures including the ultracold regime. The theory establishes a connection between the ultracold chemistry and the regular chemistry by showing that the same theory that gives the quantum threshold behavior agrees with the classical Gorin model at higher temperatures. In between, it predicts that the rates for identical bosonic molecules and distinguishable molecules would first decrease with temperature outside of the Wigner threshold region, before rising after a minimum is reached.Comment: 5 pages, 1 figur

    A Proposed Legislative Solution to the Problem of Violent Acts by Participants during Professional Sporting Events: The Sports Violence Act of 1980

    Get PDF
    Over the past decade, the law\u27s emergence into the professional sports arena has been increasing. Traditional criminal assault and battery charges have been levied against professional athletes for injuring other participants. Professional players have also been allowed to recover under tort law for injuries incurred as a result of the intentional and reckless conduct of their fellow players. Despite this increase in judicial activity, however, standards of conduct for professional sports participants are still not well defined and enforcement is haphazard and uneven. To alleviate these problems and also to satisfy the perceived increase in societal consciousness towards violent acts in general, Rep. Ronald M. Mottl of Ohio proposed H.R. 7903, The Sports Violence Act of 1980. The purpose of the Act is to “deter and punish, through criminal penalties, the episodes of excessive violence that are increasingly characterizing professional sports.” The bill would make it a federal crime for a player in a professional sporting event to knowingly use excessive physical force against one of his fellow participants. Excessive physical force is defined generally as force which has no reasonable relationship to the competitive goals of the sport and which is not a foreseeable hazard of the athlete\u27s involvement in the sport. The maximum penalty for violating the statute would be a $5,000 fine and one year imprisonment. This Comment will first examine the various mechanisms that have been used to deal with acts of professional sports violence, namely internal league controls, tort law and state criminal assault and battery statutes. After an analysis of the advantages and disadvantages of these existing approaches, the Act will be evaluated to determine if its approach offers a substantial improvement over those methods of control already available. It will be seen that although current enforcement procedures may be inadequate in most cases, the Act fails to offer any solutions to the problems Suffered by these existing methods of control. Arguably, the Act even presents some new interpretative problems not presently encountered with existing approaches

    Using nonequilibrium fluctuation theorems to understand and correct errors in equilibrium and nonequilibrium discrete Langevin dynamics simulations

    Full text link
    Common algorithms for computationally simulating Langevin dynamics must discretize the stochastic differential equations of motion. These resulting finite time step integrators necessarily have several practical issues in common: Microscopic reversibility is violated, the sampled stationary distribution differs from the desired equilibrium distribution, and the work accumulated in nonequilibrium simulations is not directly usable in estimators based on nonequilibrium work theorems. Here, we show that even with a time-independent Hamiltonian, finite time step Langevin integrators can be thought of as a driven, nonequilibrium physical process. Once an appropriate work-like quantity is defined -- here called the shadow work -- recently developed nonequilibrium fluctuation theorems can be used to measure or correct for the errors introduced by the use of finite time steps. In particular, we demonstrate that amending estimators based on nonequilibrium work theorems to include this shadow work removes the time step dependent error from estimates of free energies. We also quantify, for the first time, the magnitude of deviations between the sampled stationary distribution and the desired equilibrium distribution for equilibrium Langevin simulations of solvated systems of varying size. While these deviations can be large, they can be eliminated altogether by Metropolization or greatly diminished by small reductions in the time step. Through this connection with driven processes, further developments in nonequilibrium fluctuation theorems can provide additional analytical tools for dealing with errors in finite time step integrators.Comment: 11 pages, 4 figure

    Agrotechnologies towards Ecotechnologies the three pillars for developing Eco-design

    Get PDF
    International audienceTo boost agrotechnologies towards ecotechnologies ("environmental technologies" according to ETAP programme of EU, or "more ecologically productive technologies" in the context of agriculture), we need to strengthen a "triple bottom" system: -To take into account, in "Life Cycle Analysis" methodologies, the natural variability in time and space of these applications in land use. - To develop an overall approach for realistic machinery qualification, in order to feed the environmental burdens accurately through relevant data bases collected on agrotechnologies in real action. - To work on Eco-innovation processes, by deepening specific innovation tools and methods, for implementation of innovative solutions chosen according to LCA results. This paper presents the concept, develops the methods and illustrates them by examples of results on organic spreading technologies

    Fluctuating and dissipative dynamics of dark solitons in quasi-condensates

    Full text link
    The fluctuating and dissipative dynamics of matter-wave dark solitons within harmonically trapped, partially condensed Bose gases is studied both numerically and analytically. A study of the stochastic Gross-Pitaevskii equation, which correctly accounts for density and phase fluctuations at finite temperatures, reveals dark soliton decay times to be lognormally distributed at each temperature, thereby characterizing the previously predicted long lived soliton trajectories within each ensemble of numerical realizations (S.P. Cockburn {\it et al.}, Phys. Rev. Lett. 104, 174101 (2010)). Expectation values for the average soliton lifetimes extracted from these distributions are found to agree well with both numerical and analytic predictions based upon the dissipative Gross-Pitaevskii model (with the same {\it ab initio} damping). Probing the regime for which 0.8kBT<μ<1.6kBT0.8 k_{B}T < \mu < 1.6 k_{B}T, we find average soliton lifetimes to scale with temperature as τT4\tau\sim T^{-4}, in agreement with predictions previously made for the low-temperature regime kBTμk_{B}T\ll\mu. The model is also shown to capture the experimentally-relevant decrease in the visibility of an oscillating soliton due to the presence of background fluctuations.Comment: 17 pages, 14 figure

    Adaptive Langevin Sampler for Separation of t-Distribution Modelled Astrophysical Maps

    Full text link
    We propose to model the image differentials of astrophysical source maps by Student's t-distribution and to use them in the Bayesian source separation method as priors. We introduce an efficient Markov Chain Monte Carlo (MCMC) sampling scheme to unmix the astrophysical sources and describe the derivation details. In this scheme, we use the Langevin stochastic equation for transitions, which enables parallel drawing of random samples from the posterior, and reduces the computation time significantly (by two orders of magnitude). In addition, Student's t-distribution parameters are updated throughout the iterations. The results on astrophysical source separation are assessed with two performance criteria defined in the pixel and the frequency domains.Comment: 12 pages, 6 figure

    Fluctuation-Dissipation-Theorem violation during the formation of a colloidal-glass

    Full text link
    The relationship between the conductivity and the polarization noise is measured in a gel as a function of frequency in the range 1Hz40Hz1Hz - 40Hz. It is found that at the beginning of the transition from a fluid like sol to a solid like gel the fluctuation dissipation theorem is strongly violated. The amplitude and the persistence time of this violation are decreasing functions of frequency. At the lowest frequencies of the measuring range it persists for times which are about 5% of the time needed to form the gel. This phenomenology is quite close to the recent theoretical predictions done for the violation of the fluctuation dissipation theorem in glassy systems.Comment: 6 pages + 4 figure

    Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry

    Full text link
    We consider a triality between the Zermelo navigation problem, the geodesic flow on a Finslerian geometry of Randers type, and spacetimes in one dimension higher admitting a timelike conformal Killing vector field. From the latter viewpoint, the data of the Zermelo problem are encoded in a (conformally) Painleve-Gullstrand form of the spacetime metric, whereas the data of the Randers problem are encoded in a stationary generalisation of the usual optical metric. We discuss how the spacetime viewpoint gives a simple and physical perspective on various issues, including how Finsler geometries with constant flag curvature always map to conformally flat spacetimes and that the Finsler condition maps to either a causality condition or it breaks down at an ergo-surface in the spacetime picture. The gauge equivalence in this network of relations is considered as well as the connection to analogue models and the viewpoint of magnetic flows. We provide a variety of examples.Comment: 37 pages, 6 figure
    corecore