1,293 research outputs found

    Intermittent suckling in combination with an older weaning age improves growth, feed intake and aspects of gastrointestinal tract carbohydrate absorption in pigs after weaning

    Get PDF
    This study tested the hypothesis that intermittent suckling (IS) with or without an older weaning age would improve post-weaning gastrointestinal tract (GIT) carbohydrate absorptive capacity in pigs while reducing post-weaning stress and aspects of the inflammatory response. Three weaning regimes using primiparous sows were compared: (1) conventional weaning (CW28) (n = 22), where piglets were weaned conventionally at day 28; (2) IS28 (n = 21), where IS started at day 21 until weaning at day 28; and (3) IS35 (n = 21), where IS started at day 28 until weaning at day 35. Sugar absorption tests (10% mannitol or 10% galactose) were used to measure GIT absorptive capacity. All measured parameters were compared in relation to weaning across treatments (i.e., different physiological ages were compared). The IS35 pigs grew fastest in the 12 days after weaning (p < 0.01) and had the highest solid feed intake before and after weaning (p < 0.05). Irrespective of treatment, pre-weaning mannitol levels were higher than post-weaning levels (p < 0.01), whereas post-weaning galactose levels were highest in IS35 pigs (p < 0.01). Cytokine data did not show any treatment effects. In conclusion, these data suggest that IS in combination with an older weaning age (day 35) improved post-weaning adaptation as evidenced by improvements in performance measures and galactose absorption. However, IS28 did not improve post-weaning performance

    Identifying patients who may benefit from adaptive radiotherapy:Does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help?

    Get PDF
    AbstractIn the last decade, many efforts have been made to characterize anatomic changes of head and neck organs at risk (OARs) and the dosimetric consequences during radiotherapy. This review was undertaken to provide an overview of the magnitude and frequency of these effects, and to investigate whether we could find criteria to identify head and neck cancer patients who may benefit from adaptive radiotherapy (ART). Possible relationships between anatomic and dosimetric changes and outcome were explicitly considered. A literature search according to PRISMA guidelines was performed in MEDLINE and EMBASE for studies concerning anatomic or dosimetric changes of head and neck OARs during radiotherapy. Fifty-one eligible studies were found. The majority of papers reported on parotid gland (PG) anatomic and dosimetric changes. In some patients, PG mean dose differences between planning CT and repeat CT scans up to 10Gy were reported. In other studies, only minor dosimetric effects (i.e. <1Gy difference in PG mean dose) were observed as a result of significant anatomic changes. Only a few studies reported on the clinical relevance of anatomic and dosimetric changes in terms of complications or quality of life. Numerous potential selection criteria for anatomic and dosimetric changes during radiotherapy were found and listed. The heterogeneity between studies prevented unambiguous conclusions on how to identify patients who may benefit from ART in head and neck cancer. Potential pre-treatment selection criteria identified from this review include tumour location (nasopharyngeal carcinoma), age, body mass index, planned dose to the parotid glands, the initial parotid gland volume, and the overlap volume of the parotid glands with the target volume. These criteria should be further explored in well-designed and well-powered prospective studies, in which possible relationships between anatomic and dosimetric changes and outcome need to be established

    Model-based comparison of organ at risk protection between VMAT and robustly optimised IMPT plans

    Get PDF
    The comparison between intensity-modulated proton therapy (IMPT) and volume-modulated arc therapy (VMAT) plans, based on models of normal tissue complication probabilities (NTCP), can support the choice of radiation modality. IMPT irradiation plans for 50 patients with head and neck tumours originally treated with photon therapy have been robustly optimised against density and setup uncertainties. The dose distribution has been calculated with a Monte Carlo (MC) algorithm. The comparison of the plans was based on dose-volume parameters in organs at risk (OARs) and NTCP-calculations for xerostomia, sticky saliva, dysphagia and tube feeding using Langendijk's model-based approach. While the dose distribution in the target volumes is similar, the IMPT plans show better protection of OARs. Therefore, it is not the high dose confirmation that constitutes the advantage of protons, but it is the reduction of the mid-to-low dose levels compared to photons. This work investigates to what extent the advantages of proton radiation are beneficial for the patient's post-therapeutic quality of life (QoL). As a result, approximately one third of the patients examined benefit significantly from proton therapy with regard to possible late side effects. Clinical data is needed to confirm the model-based calculations

    Strategies to promote translational research within the European Organisation for Research and Treatment of Cancer (EORTC) Head and Neck Cancer Group: a report from the Translational Research Subcommittee

    Get PDF
    Head and neck squamous cell cancer (HNSCC) is the sixth leading cause of cancer-related deaths worldwide. These tumors are commonly diagnosed at advanced stages and mortality rates remain high. Even cured patients suffer the consequences of aggressive treatment that includes surgery, chemotherapy, and radiotherapy. In the past, in clinical trials, HNSCC was considered as a single disease entity. Advances in molecular biology with the development of genomic and proteomic approaches have demonstrated distinct prognostic HNSCC patient subsets beyond those defined by traditional clinical-pathological factors such as tumor subsite and stage [Cho W (ed). An Omics Perspective on Cancer Research. New York/Berlin: Springer 2010]. Validation of these biomarkers in large prospective clinical trials is required before their clinical implementation. To promote this research, the European Organisation for Research and Treatment of Cancer (EORTC) Head and Neck Cancer Program will develop the following strategies—(i) biobanking: prospective tissue collection from uniformly treated patients in the setting of clinical trials; (ii) a group of physicians, physician—scientists, and EORTC Headquarters staff devoted to patient-oriented head and neck cancer research; (iii) a collaboration between the basic scientists of the Translational Research Division interested in head and neck cancer research and the physicians of the Head and Neck Cancer Group; and (iv) funding through the EORTC Grant Program and the Network Core Institutions Consortium. In the present report, we summarize our strategic plans to promote head and neck cancer research within the EORTC framewor

    Current Status and Application of Proton Therapy for Esophageal Cancer

    Get PDF
    Esophageal cancer remains one of the leading causes of death from cancer across the world despite advances in multimodality therapy. Although early-stage disease can often be treated surgically, the current state of the art for locally advanced disease is concurrent chemoradiation, followed by surgery whenever possible. The uniform midline tumor location puts a strong importance on the need for precise delivery of radiation that would minimize dose to the heart and lungs, and the biophysical properties of proton beam makes this modality potential ideal for esophageal cancer treatment. This review covers the current state of knowledge of proton therapy for esophageal cancer, focusing on published retrospective single- and multi-institutional clinical studies, and emerging data from prospective clinical trials, that support the benefit of protons vs photon-based radiation in reducing postoperative complications, cardiac toxicity, and severe radiation induced immune suppression, which may improve survival outcomes for patients. In addition, we discuss the incorporation of immunotherapy to the curative management of esophageal cancers in the not-too-distant future. However, there is still a lack of high-level evidence to support proton therapy in the treatment of esophageal cancer, and proton therapy has its limitations in clinical application. It is expected to see the results of future large-scale randomized clinical trials and the continuous improvement of proton radiotherapy technology
    • …
    corecore