341 research outputs found

    Fire Hose instability driven by alpha particle temperature anisotropy

    Get PDF
    We investigate properties of a solar wind-like plasma including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, the instability can be triggered also when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion species have sufficient parallel anisotropies both of them can drive the instability, and we observe generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.Comment: 10 pages, 9 figures, Accepted for publication in The Astrophysical Journa

    Two-dimensional Hybrid Simulations of Kinetic Plasma Turbulence: Current and Vorticity vs Proton Temperature

    Full text link
    Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the other hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.Comment: 4 pages, 2 figures, Proceedings of the Fourteenth International Solar Wind Conferenc

    Three-dimensional evolution of magnetic and velocity shear driven instabilities in a compressible magnetized jet

    Full text link
    The problem of three-dimensional combined magnetic and velocity shear driven instabilities of a compressible magnetized jet modeled with a plane neutral/current double vortex sheet in the framework of the resistive magnetohydrodynamics is addressed. The resulting dynamics given by the stream+current sheet interaction is analyzed and the effects of a variable geometry of the basic fields are considered. Depending on the basic asymptotic magnetic field configuration, a selection rule of the linear instability modes can be obtained. Hence, the system follows a two-stage path developing either through a fully three-dimensional dynamics with a rapid evolution of kink modes leading to a final turbulent state, or rather through a driving two-dimensional instability pattern that develops on parallel planes on which a reconnection+coalescence process takes place.Comment: 33 pages, 15 figures, accepted for publication in Physics of Plasma

    Anisotropy of third-order structure functions in MHD turbulence

    Full text link
    The measure of the third-order structure function, Y, is employed in the solar wind to compute the cascade rate of turbulence. In the absence of a mean field B0=0, Y is expected to be isotropic (radial) and independent of the direction of increments, so its measure yields directly the cascade rate. For turbulence with mean field, as in the solar wind, Y is expected to become more two dimensional (2D), that is, to have larger perpendicular components, loosing the above simple symmetry. To get the cascade rate one should compute the flux of Y, which is not feasible with single-spacecraft data, thus measurements rely upon assumptions about the unknown symmetry. We use direct numerical simulations (DNS) of magneto-hydrodynamic (MHD) turbulence to characterize the anisotropy of Y. We find that for strong guide field B0=5 the degree of two-dimensionalization depends on the relative importance of shear and pseudo polarizations (the two components of an Alfv\'en mode in incompressible MHD). The anisotropy also shows up in the inertial range. The more Y is 2D, the more the inertial range extent differs along parallel and perpendicular directions. We finally test the two methods employed in observations and find that the so-obtained cascade rate may depend on the angle between B0 and the direction of increments. Both methods yield a vanishing cascade rate along the parallel direction, contrary to observations, suggesting a weaker anisotropy of solar wind turbulence compared to our DNS. This could be due to a weaker mean field and/or to solar wind expansion.Comment: Some text editing and typos corrected, 13 pages, 6 figures, to be published in Ap
    corecore