15 research outputs found

    Demo

    No full text

    Addressing Mobility in Wireless Sensor Media Access Protocol

    No full text
    Handling mobility in wireless sensor networks presents several new new challenges. Techniques developed for other mobile networks, such as mobile phone or mobile adhoc networks can not be applicable, as in these networks energy is not a very critical resource. This paper presents a new adaptive Mobility-aware Sensor MAC protocol (MS-MAC) for mobile sensor applications. In MS-MAC protocol, a node detects its neighbor’s mobility based on a change in its received signal level from the neighbor, or a loss of connection with this neighbor after a timeout period. By propagating mobility pres-ence information, and distance from nearest border node, each node learns its relative distance from the nearest mobile node and from nearest border node. Depending on the mobile node movement direction, the distances from mobile and border nodes, a node may trigger its neighbor search mechanism to quicken the connection setup time. The simulation results show that, the new mobility-aware MAC protocol can work very energy-efficiently when the network is stationary, whereas it performs much better in terms of throughput than the existing sensor MAC (SMAC) protocol in scenarios involving mobile sensors. 1

    Chain-Type Wireless Sensor Network for Monitoring Long Range Infrastructures: Architecture and Protocols

    Get PDF
    We present in this paper an investigation of a special class of wireless sensor networks for monitoring critical infrastructures that may extend for hundreds of miles in distances. Such networks are fundamentally different from traditional sensor networks in that the sensor nodes in this class of networks are deployed along narrowly elongated geographical areas and form a chain-type topology. Based on careful analysis of existing sensor network architectures, we first demonstrate the need to develop new architecture and networking protocols to match the unique topology of chain-type sensor networks. We then propose hierarchical network architecture that consists of clusters of sensor nodes to enable the chain-type sensor networks to be scalable to cover typically long range infrastructures with tolerable delay in network-wide data collection. To maintain energy efficient operations and maximize the lifetime for such a chain-type sensor network, we devise a smart strategy for the deployment of cluster heads. Protocols for network initialization and seamless operations of the chain-type sensor networks are also developed to match the proposed hierarchical architecture and cluster head deployment strategy. Simulations have been carried out to verify the performance of the hierarchical architecture, the smart node deployment strategy, and the corresponding network initialization and operation protocols

    Verification of failover effects from distributed control system communication networks in digitalized nuclear power plants

    No full text
    Distributed Control System (DCS) communication networks, which use Fast Ethernet with redundant networks for the transmission of information, have been installed in digitalized nuclear power plants. Normally, failover tests are performed to verify the reliability of redundant networks during design and manufacturing phases; however, systematic integrity tests of DCS networks cannot be fully performed during these phases because all relevant equipment is not installed completely during these two phases. In additions, practical verification tests are insufficient, and there is a need to test the actual failover function of DCS redundant networks in the target environment. The purpose of this study is to verify that the failover functions works correctly in certain abnormal conditions during installation and commissioning phase and identify the influence of network failover on the entire DCS. To quantify the effects of network failover in the DCS, the packets (Protocol Data Units) must be collected and resource usage of the system has to be monitored and analyzed. This study introduces the use of a new methodology for verification of DCS network failover during the installation and commissioning phases. This study is expected to provide insight into verification methodology and the failover effects from DCS redundant networks. It also provides test results of network performance from DCS network failover in digitalized domestic nuclear power plants (NPPs)
    corecore