13,159 research outputs found

    Entanglement of remote atomic qubits

    Full text link
    We report observations of entanglement of two remote atomic qubits, achieved by generating an entangled state of an atomic qubit and a single photon at Site A, transmitting the photon to Site B in an adjacent laboratory through an optical fiber, and converting the photon into an atomic qubit. Entanglement of the two remote atomic qubits is inferred by performing, locally, quantum state transfer of each of the atomic qubits onto a photonic qubit and subsequent measurement of polarization correlations in violation of the Bell inequality |S| <2. We experimentally determine S =2.16 +/- 0.03. Entanglement of two remote atomic qubits, each qubit consisting of two independent spin wave excitations, and reversible, coherent transfer of entanglement between matter and light, represent important advances in quantum information science.Comment: 5 pages, 3 figure

    Coupled cavity QED for coherent control of photon transmission (I): Green function approach for hybrid systems with two-level doping

    Get PDF
    This is the first one of a series of our papers theoretically studying the coherent control of photon transmission along the coupled resonator optical waveguide (CROW) by doping artificial atoms for various hybrid structures. We will provide the several approaches correspondingly based on Green function, the mean field method and spin wave theory et al. In the present paper we adopt the two-time Green function approach to study the coherent transmission photon in a CROW with homogeneous couplings, each cavity of which is doped by a two-level artificial atom. We calculate the two-time correlation function for photon in the weak-coupling case. Its poles predict the exact dispersion relation, which results in the group velocity coherently controlled by the collective excitation of the doping atoms. We emphasize the role of the population inversion of doping atoms induced by some polarization mechanism.Comment: 11 pages, 9 figure

    Evolutionary tracks for Betelgeuse

    Full text link
    We have constructed a series of non-rotating quasi-hydrostatic evolutionary models for the M2 Iab supergiant Betelgeuse (α Orionis\alpha~Orionis). Our models are constrained by multiple observed values for the temperature, luminosity, surface composition and mass loss for this star, along with the parallax distance and high resolution imagery that determines its radius. We have then applied our best-fit models to analyze the observed variations in surface luminosity and the size of detected surface bright spots as the result of up-flowing convective material from regions of high temperature in the surface convective zone. We also attempt to explain the intermittently observed periodic variability in a simple radial linear adiabatic pulsation model. Based upon the best fit to all observed data, we suggest a best progenitor mass estimate of 203+5M 20 ^{+5}_{-3} M_\odot and a current age from the start of the zero-age main sequence of 8.08.58.0 - 8.5 Myr based upon the observed ejected mass while on the giant branch.Comment: 27 pages, 11 figures, Revised per referee suggestions, Accepted for publication in the Astrophysical Journa

    Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs

    Full text link
    The carrier dynamics of photoexcited electrons in the vicinity of the surface of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy measurements, coupled with Monte Carlo simulations of THz emission, revealed that the surface electric field of GaAs reverses after passivation. The conductivity of photoexcited electrons was determined via optical-pump THz-probe spectroscopy, and was found to double after passivation. These experiments demonstrate that passivation significantly reduces the surface state density and surface recombination velocity of GaAs. Finally, we have demonstrated that passivation leads to an enhancement in the power radiated by photoconductive switch THz emitters, thereby showing the important influence of surface chemistry on the performance of ultrafast THz photonic devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Spectral analysis of Gene co-expression network of Zebrafish

    Full text link
    We analyze the gene expression data of Zebrafish under the combined framework of complex networks and random matrix theory. The nearest neighbor spacing distribution of the corresponding matrix spectra follows random matrix predictions of Gaussian orthogonal statistics. Based on the eigenvector analysis we can divide the spectra into two parts, first part for which the eigenvector localization properties match with the random matrix theory predictions, and the second part for which they show deviation from the theory and hence are useful to understand the system dependent properties. Spectra with the localized eigenvectors can be characterized into three groups based on the eigenvalues. We explore the position of localized nodes from these different categories. Using an overlap measure, we find that the top contributing nodes in the different groups carry distinguished structural features. Furthermore, the top contributing nodes of the different localized eigenvectors corresponding to the lower eigenvalue regime form different densely connected structure well separated from each other. Preliminary biological interpretation of the genes, associated with the top contributing nodes in the localized eigenvectors, suggests that the genes corresponding to same vector share common features.Comment: 6 pages, four figures (accepted in EPL

    Deflection of Slow Light by Magneto-Optically Controlled Atomic Media

    Full text link
    We present a semi-classical theory for light deflection by a coherent Λ\Lambda-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control laser) are position-dependent due to the Zeeman effect by the inhomogeneous magnetic field (or the inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency happens to avoid medium absorption. Our theoretical approach based on Fermat's principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the new effects for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field.Comment: 4 pages, 3 figure

    Leukemia-related chromosomal loss detected in hematopoietic progenitor cells of benzene-exposed workers.

    Get PDF
    Benzene exposure causes acute myeloid leukemia and hematotoxicity, shown as suppression of mature blood and myeloid progenitor cell numbers. As the leukemia-related aneuploidies monosomy 7 and trisomy 8 previously had been detected in the mature peripheral blood cells of exposed workers, we hypothesized that benzene could cause leukemia through the induction of these aneuploidies in hematopoietic stem and progenitor cells. We measured loss and gain of chromosomes 7 and 8 by fluorescence in situ hybridization in interphase colony-forming unit-granulocyte-macrophage (CFU-GM) cells cultured from otherwise healthy benzene-exposed (n=28) and unexposed (n=14) workers. CFU-GM monosomy 7 and 8 levels (but not trisomy) were significantly increased in subjects exposed to benzene overall, compared with levels in the control subjects (P=0.0055 and P=0.0034, respectively). Levels of monosomy 7 and 8 were significantly increased in subjects exposed to &lt;10 p.p.m. (20%, P=0.0419 and 28%, P=0.0056, respectively) and ≥ 10 p.p.m. (48%, P=0.0045 and 32%, 0.0354) benzene, compared with controls, and significant exposure-response trends were detected (P(trend)=0.0033 and 0.0057). These data show that monosomies 7 and 8 are produced in a dose-dependent manner in the blood progenitor cells of workers exposed to benzene, and may be mechanistically relevant biomarkers of early effect for benzene and other leukemogens

    A study of acute respiratory disease in families exposed to different levels of Air pollution in the Great Salt Lake basin, Utah, 1971-1972 and 1972-1973.

    Get PDF
    The reported incidence of acute respiratory illness in families exposed to different concentrations of air pollution was studied during two consecutive school years. The purpose of the study was to determine the effect of increased exposure to sulfur dioxide and suspended particulate matter. In each of four study communities, the mothers of approximately 250 white families were contacted biweekly to obtain information regarding the occurrence of respiratory symptoms in each family member. Annual mean ambient sulfur dioxide concentrations in one community for the three years included in the study (1971-1973) were well above the current air quality standard of 80 micrograms/m3, while in the other three communities the annual sulfur dioxide concentrations were much lower (usually less than 40 micrograms/m3). Suspended particulate matter concentrations in high sulfur dioxide community were close to the limit designated by the annual standard (75 micrograms/m3) but actual exposures in the four communities probably were not excessive. Regression analyses of the data collected showed inconsistent associations between illness rates and educational attainment of the head of household, crowding in the home, bronchitis in parents or smoking of parents. However, once the effects of these factors were removed the adjusted rates showed little association with community of residence. It was concluded that the higher concentrations of sulfur dioxide in the Utah atmosphere could not be the cause of increases in acute respiratory illness in the exposed populations

    Probing the magnetic ground state of the molecular Dysprosium triangle

    Full text link
    We present zero field muon spin lattice relaxation measurements of a Dysprosium triangle molecular magnet. The local magnetic fields sensed by the implanted muons indicate the coexistence of static and dynamic internal magnetic fields below T 35T^* ~35 K. Bulk magnetization and heat capacity measurements show no indication of magnetic ordering below this temperature. We attribute the static fields to the slow relaxation of the magnetization in the ground state of Dy3. The fluctuation time of the dynamic part of the field is estimated to be ~0.55 μ\mus at low temperaturesComment: 5 pages, 5 figures, accepted for publication in Phys. Rev.
    corecore