19,618 research outputs found

    The Low Column Density Lyman-alpha Forest

    Get PDF
    We develop an analytical method based on the lognormal approximation to compute the column density distribution of the Lyman-alpha forest in the low column density limit. We compute the column density distributions for six different cosmological models and found that the standard, COBE-normalized CDM model cannot fit the observations of the Lyman-alpha forest at z=3. The amplitude of the fluctuations in that model has to be lowered by a factor of almost 3 to match observations. However, the currently viable cosmological models like the lightly tilted COBE-normalized CDM+Lambda model, the CHDM model with 20% neutrinos, and the low-amplitude Standard CDM model are all in agreement with observations, to within the accuracy of our approximation, for the value of the cosmological baryon density at or higher than the old Standard Bing Bang Nucleosynthesis value of 0.0125 for the currently favored value of the ionizing radiation intensity. With the low value for the baryon density inferred by Hogan & Rugers (1996), the models can only marginally match observations.Comment: three postscript figures included, submitted to ApJ

    Ion collection by oblique surfaces of an object in a transversely-flowing strongly-magnetized plasma

    Get PDF
    The equations governing a collisionless obliquely-flowing plasma around an ion-absorbing object in a strong magnetic field are shown to have an exact analytic solution even for arbitrary (two-dimensional) object-shape, when temperature is uniform, and diffusive transport can be ignored. The solution has an extremely simple geometric embodiment. It shows that the ion collection flux density to a convex body's surface depends only upon the orientation of the surface, and provides the theoretical justification and calibration of oblique `Mach-probes'. The exponential form of this exact solution helps explain the approximate fit of this function to previous numerical solutions.Comment: Four pages, 2 figures. Submitted to Phys. Rev. Letter

    Recovery of continuous wave squeezing at low frequencies

    Full text link
    We propose and demonstrate a system that produces squeezed vacuum using a pair of optical parametric amplifiers. This scheme allows the production of phase sidebands on the squeezed vacuum which facilitate phase locking in downstream applications. We observe strong, stably locked, continuous wave vacuum squeezing at frequencies as low as 220 kHz. We propose an alternative resonator configuration to overcome low frequency squeezing degradation caused by the optical parametric amplifiers.Comment: 9 pages, 4 figure

    The Evolution of Bias - Generalized

    Full text link
    Fry (1996) showed that galaxy bias has the tendency to evolve towards unity, i.e. in the long run, the galaxy distribution tends to trace that of matter. Generalizing slightly Fry's reasoning, we show that his conclusion remains valid in theories of modified gravity (or equivalently, complex clustered dark energy). This is not surprising: as long as both galaxies and matter are subject to the same force, dynamics would drive them towards tracing each other. This holds, for instance, in theories where both galaxies and matter move on geodesics. This relaxation of bias towards unity is tempered by cosmic acceleration, however: the bias tends towards unity but does not quite make it, unless the formation bias were close to unity. Our argument is extended in a straightforward manner to the case of a stochastic or nonlinear bias. An important corollary is that dynamical evolution could imprint a scale dependence on the large scale galaxy bias. This is especially pronounced if non-standard gravity introduces new scales to the problem: the bias at different scales relaxes at different rates, the larger scales generally more slowly and retaining a longer memory of the initial bias. A consistency test of the current (general relativity + uniform dark energy) paradigm is therefore to look for departure from a scale independent bias on large scales. A simple way is to measure the relative bias of different populations of galaxies which are at different stages of bias relaxation. Lastly, we comment on the possibility of directly testing the Poisson equation on cosmological scales, as opposed to indirectly through the growth factor.Comment: 8 pages, 2 figures. References added. Accepted for publication in Physical Review

    Microlensing of gamma ray bursts by stars and MACHOs

    Full text link
    The microlensing interpretation of the optical afterglow of GRB 000301C seems naively surprising, since a simple estimate of the stellar microlensing rate gives less than one in four hundred for a flat Omega_Lambda=0.7 cosmology, whereas one event was seen in about thirty afterglows. Considering baryonic MACHOs making up half of the baryons in the universe, the microlensing probability per burst can be roughly 5% for a GRB at redshift z=2. We explore two effects that may enhance the probability of observing microlensed gamma-ray burst afterglows: binary lenses and double magnification bias. We find that the consideration of binary lenses can increase the rate only at the ~15% level. On the other hand, because gamma-ray bursts for which afterglow observations exist are typically selected based on fluxes at widely separated wavebands which are not necessarily well correlated (e.g. localization in X-ray, afterglow in optical/infrared), magnification bias can operate at an enhanced level compared to the usual single-bias case. We find that existing estimates of the slope of the luminosity function of gamma-ray bursts, while as yet quite uncertain, point to enhancement factors of more than three above the simple estimates of the microlensing rate. We find that the probability to observe at least one microlensing event in the sample of 27 measured afterglows can be 3-4% for stellar lenses, or as much as 25 Omega_lens for baryonic MACHOs. We note that the probability to observe at least one event over the available sample of afterglows is significant only if a large fraction of the baryons in the universe are condensed in stellar-mass objects. (ABRIDGED)Comment: 22 pages, 4 figures, 2 table

    Schubert Polynomials for the affine Grassmannian of the symplectic group

    Full text link
    We study the Schubert calculus of the affine Grassmannian Gr of the symplectic group. The integral homology and cohomology rings of Gr are identified with dual Hopf algebras of symmetric functions, defined in terms of Schur's P and Q-functions. An explicit combinatorial description is obtained for the Schubert basis of the cohomology of Gr, and this is extended to a definition of the affine type C Stanley symmetric functions. A homology Pieri rule is also given for the product of a special Schubert class with an arbitrary one.Comment: 45 page

    Extremely Small Sizes for Faint z~2-8 Galaxies in the Hubble Frontier Fields: A Key Input For Establishing their Volume Density and UV Emissivity

    Get PDF
    We provide the first observational constraints on the sizes of the faintest galaxies lensed by the Hubble Frontier Fields (HFF) clusters. Ionizing radiation from faint galaxies likely drives cosmic reionization, and the HFF initiative provides a key opportunity to find such galaxies. Yet, we cannot really assess their ionizing emissivity without a robust measurement of their sizes, since this is key to quantifying both their prevalence and the faint-end slope to the UV luminosity function. Here we provide the first such size constraints with 2 new techniques. The first utilizes the fact that the detectability of highly-magnified galaxies as a function of shear is very dependent on a galaxy's size. Only the most compact galaxies will remain detectable in regions of high shear (vs. a larger detectable size range for low shear), a phenomenon we carefully quantify using simulations. Remarkably, however, no correlation is found between the surface density of faint galaxies and the predicted shear, using 87 faint high-magnification mu>10 z~2-8 galaxies seen behind the first 4 HFF clusters. This can only be the case if such faint (~-15 mag) galaxies have significantly smaller sizes than luminous galaxies. We constrain their half-light radii to be <~30 mas (<160-240 pc). As a 2nd size probe, we rotate and stack 26 faint high-magnification sources along the major shear axis. Less elongation is found than even for objects with an intrinsic half-light radius of 10 mas. Together these results indicate that extremely faint z~2-8 galaxies have near point-source profiles in the HFF dataset (half-light radii conservatively <30 mas and likely 5-10 mas). These results suggest smaller completeness corrections and hence much lower volume densities for faint z~2-8 galaxies and shallower faint-end slopes than have been derived in many recent studies (by factors of ~2-3 and by dalpha>~0.1-0.3).Comment: 19 pages, 15 figures, 3 tables, accepted for publication in Ap

    Higher-order non-symmetric counterterms in pure Yang-Mills theory

    Full text link
    We analyze the restoration of the Slavnov-Taylor (ST) identities for pure massless Yang-Mills theory in the Landau gauge within the BPHZL renormalization scheme with IR regulator. We obtain the most general form of the action-like part of the symmetric regularized action, obeying the relevant ST identities and all other relevant symmetries of the model, to all orders in the loop expansion. We also give a cohomological characterization of the fulfillment of BPHZL IR power-counting criterion, guaranteeing the existence of the limit where the IR regulator goes to zero. The technique analyzed in this paper is needed in the study of the restoration of the ST identities for those models, like the MSSM, where massless particles are present and no invariant regularization scheme is known to preserve the full set of ST identities of the theory.Comment: Final version published in the journa
    • …
    corecore