439 research outputs found

    Detection of synchronization from univariate data using wavelet transform

    Full text link
    A method is proposed for detecting from univariate data the presence of synchronization of a self-sustained oscillator by external driving with varying frequency. The method is based on the analysis of difference between the oscillator instantaneous phases calculated using continuous wavelet transform at time moments shifted by a certain constant value relative to each other. We apply our method to a driven asymmetric van der Pol oscillator, experimental data from a driven electronic oscillator with delayed feedback and human heartbeat time series. In the latest case, the analysis of the heart rate variability data reveals synchronous regimes between the respiration and slow oscillations in blood pressure.Comment: 10 pages, 9 figure

    Liver transplantation for glycogen storage disease types I, III, and IV

    Get PDF
    Glycogen storage disease (GSD) types I, III, and IV can be associated with severe liver disease. The possible development of hepatocellular carcinoma and/or hepatic failure make these GSDs potential candidates for liver transplantation. Early diagnosis and initiation of effective dietary therapy have dramatically improved the outcome of GSD type I by reducing the incidence of liver adenoma and renal insufficiency. Nine type I and 3 type III patients have received liver transplants because of poor metabolic control, multiple liver adenomas, or progressive liver failure. Metabolic abnormalities were corrected in all GSD type I and type III patients, while catch-up growth was reported only in two patients. Whether liver transplantation results in reversal and/or prevention of renal disease remains unclear. Neutropenia persisted in both GSDIb patients post liver transplantation necessitating continuous granulocyte colony stimulating factor treatment. Thirteen GSD type IV patients were liver transplanted because of progressive liver cirrhosis and failure. All but one patient have not had neuromuscular or cardiac complications during follow-up periods for as long as 13 years. Four have died within a week and 5 years after transplantation. Caution should be taken in selecting GSD type IV candidates for liver transplantation because of the variable phenotype, which may include life-limiting extrahepatic manifestations. It remains to be evaluated, whether a genotype-phenotype correlation exists for GSD type IV, which may aid in the decision making. Conclusion Liver transplantation should be considered for patients with glycogen storage disease who have developed liver malignancy or hepatic failure, and for type IV patients with the classical and progressive hepatic form

    A Blueprint for Real-Time Functional Mapping via Human Intracranial Recordings

    Get PDF
    International audienceBACKGROUND: The surgical treatment of patients with intractable epilepsy is preceded by a pre-surgical evaluation period during which intracranial EEG recordings are performed to identify the epileptogenic network and provide a functional map of eloquent cerebral areas that need to be spared to minimize the risk of post-operative deficits. A growing body of research based on such invasive recordings indicates that cortical oscillations at various frequencies, especially in the gamma range (40 to 150 Hz), can provide efficient markers of task-related neural network activity. PRINCIPAL FINDINGS: Here we introduce a novel real-time investigation framework for mapping human brain functions based on online visualization of the spectral power of the ongoing intracranial activity. The results obtained with the first two implanted epilepsy patients who used the proposed online system illustrate its feasibility and utility both for clinical applications, as a complementary tool to electrical stimulation for presurgical mapping purposes, and for basic research, as an exploratory tool used to detect correlations between behavior and oscillatory power modulations. Furthermore, our findings suggest a putative role for high gamma oscillations in higher-order auditory processing involved in speech and music perception. CONCLUSION/SIGNIFICANCE: The proposed real-time setup is a promising tool for presurgical mapping, the investigation of functional brain dynamics, and possibly for neurofeedback training and brain computer interfaces

    Time scale synchronization of chaotic oscillators

    Full text link
    This paper presents the result of the investigation of chaotic oscillator synchronization. A new approach for detecting of synchronized behaviour of chaotic oscillators has been proposed. This approach is based on the analysis of different time scales in the time series generated by the coupled chaotic oscillators. This approach has been applied for the coupled Rossler and Lorenz systems.Comment: 19 pages, 12 figure

    Synchronization of chaotic oscillator time scales

    Full text link
    This paper deals with the chaotic oscillator synchronization. A new approach to detect the synchronized behaviour of chaotic oscillators has been proposed. This approach is based on the analysis of different time scales in the time series generated by the coupled chaotic oscillators. It has been shown that complete synchronization, phase synchronization, lag synchronization and generalized synchronization are the particular cases of the synchronized behavior called as "time--scale synchronization". The quantitative measure of chaotic oscillator synchronous behavior has been proposed. This approach has been applied for the coupled Rossler systems.Comment: 29 pages, 11 figures, published in JETP. 100, 4 (2005) 784-79

    Data driven optimal filtering for phase and frequency of noisy oscillations: application to vortex flowmetering

    Full text link
    A new method for extracting the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude (MIRVA) over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flowmeters. A novel measure for the strength of mode locking is proposed.Comment: 12 pages, 10 figure

    Analysis of cross-correlations in electroencephalogram signals as an approach to proactive diagnosis of schizophrenia

    Full text link
    We apply flicker-noise spectroscopy (FNS), a time series analysis method operating on structure functions and power spectrum estimates, to study the clinical electroencephalogram (EEG) signals recorded in children/adolescents (11 to 14 years of age) with diagnosed schizophrenia-spectrum symptoms at the National Center for Psychiatric Health (NCPH) of the Russian Academy of Medical Sciences. The EEG signals for these subjects were compared with the signals for a control sample of chronically depressed children/adolescents. The purpose of the study is to look for diagnostic signs of subjects' susceptibility to schizophrenia in the FNS parameters for specific electrodes and cross-correlations between the signals simultaneously measured at different points on the scalp. Our analysis of EEG signals from scalp-mounted electrodes at locations F3 and F4, which are symmetrically positioned in the left and right frontal areas of cerebral cortex, respectively, demonstrates an essential role of frequency-phase synchronization, a phenomenon representing specific correlations between the characteristic frequencies and phases of excitations in the brain. We introduce quantitative measures of frequency-phase synchronization and systematize the values of FNS parameters for the EEG data. The comparison of our results with the medical diagnoses for 84 subjects performed at NCPH makes it possible to group the EEG signals into 4 categories corresponding to different risk levels of subjects' susceptibility to schizophrenia. We suggest that the introduced quantitative characteristics and classification of cross-correlations may be used for the diagnosis of schizophrenia at the early stages of its development.Comment: 36 pages, 6 figures, 2 tables; to be published in "Physica A

    Neuronal correlates of functional magnetic resonance imaging in human temporal cortex

    Get PDF
    The relationship between changes in functional magnetic resonance imaging and neuronal activity remains controversial. Data collected during awake neurosurgical procedures for the treatment of epilepsy provided a rare opportunity to examine this relationship in human temporal association cortex. We obtained functional magnetic resonance imaging blood oxygen dependent signals, single neuronal activity and local field potentials from 8 to 300 Hz at 13 temporal cortical sites, from nine subjects, during paired associate learning and control measures. The relation between the functional magnetic resonance imaging signal and the electrophysiologic parameters was assessed in two ways: colocalization between significant changes in these signals on the same paired associate-control comparisons and multiple linear regressions of the electrophysiologic measures on the functional magnetic resonance imaging signal, across all tasks. Significant colocalization was present between increased functional magnetic resonance imaging signals and increased local field potentials power in the 50–250 Hz range. Local field potentials power greater than 100 Hz was also a significant regressor for the functional magnetic resonance imaging signal, establishing this local field potentials frequency range as a neuronal correlate of the functional magnetic resonance imaging signal. There was a trend for a relation between power in some low frequency local field potentials frequencies and the functional magnetic resonance imaging signal, for 8–15 Hz increases in the colocalization analysis and 16–23 Hz in the multiple linear regression analysis. Neither analysis provided evidence for an independent relation to frequency of single neuron activity

    Contribution of the drought tolerance-related stress-responsive NAC1 transcription factor to resistance of barley to Ramularia leaf spot

    Get PDF
    NAC proteins are plant transcription factors that are involved in tolerance to abiotic and biotic stresses, as well as in many developmental processes. Stress-responsive NAC1 (SNAC1) transcription factor is involved in drought tolerance in barley and rice, but has not been shown previously to have a role in disease resistance. Transgenic over-expression of HvSNAC1 in barley cv. Golden Promise reduced the severity of Ramularia leaf spot (RLS), caused by the fungus Ramularia collo-cygni, but had no effect on disease symptoms caused by Fusarium culmorum, Oculimacula yallundae (eyespot), Blumeria graminis f. sp. hordei (powdery mildew) or Magnaporthe oryzae (blast). The HvSNAC1 transcript was weakly induced in the RLS-susceptible cv. Golden Promise during the latter stages of R. collo-cygni symptom development when infected leaves were senescing. Potential mechanisms controlling HvSNAC1-mediated resistance to RLS were investigated. Gene expression analysis revealed no difference in the constitutive levels of antioxidant transcripts in either of the over-expression lines compared with cv. Golden Promise, nor was any difference in stomatal conductance or sensitivity to reactive oxygen species-induced cell death observed. Over-expression of HvSNAC1 delayed dark-induced leaf senescence. It is proposed that mechanisms controlled by HvSNAC1 that are involved in tolerance to abiotic stress and that inhibit senescence also confer resistance to R. collo-cygni and suppress RLS symptoms. This provides further evidence for an association between abiotic stress and senescence in barley and the development of RLS
    corecore