229 research outputs found

    Tractographic and Microstructural Analysis of the Dentato-Rubro-Thalamo-Cortical Tracts in Children Using Diffusion MRI

    Get PDF
    The dentato-rubro-thalamo-cortical tract (DRTC) is the main outflow pathway of the cerebellum, contributing to a finely balanced corticocerebellar loop involved in cognitive and sensorimotor functions. Damage to the DRTC has been implicated in cerebellar mutism syndrome seen in up to 25% of children after cerebellar tumor resection. Multi-shell diffusion MRI (dMRI) combined with quantitative constrained spherical deconvolution tractography and multi-compartment spherical mean technique modeling was used to explore the frontocerebellar connections and microstructural signature of the DRTC in 30 healthy children. The highest density of DRTC connections were to the precentral (M1) and superior frontal gyri (F1), and from cerebellar lobules I-IV and IX. The first evidence of a topographic organization of anterograde projections to the frontal cortex at the level of the superior cerebellar peduncle (SCP) is demonstrated, with streamlines terminating in F1 lying dorsomedially in the SCP compared to those terminating in M1. The orientation dispersion entropy of DRTC regions appears to exhibit greater contrast than that shown by fractional anisotropy. Analysis of a separate reproducibility cohort demonstrates good consistency in the dMRI metrics described. These novel anatomical insights into this well-studied pathway may prove to be of clinical relevance in the surgical resection of cerebellar tumors

    Mapping degeneration of the visual system in long-term follow-up after childhood hemispherectomy - A series of four cases

    Get PDF
    OBJECTIVE: Although hemidisconnection surgery may eliminate or reduce seizure activity in patients with epilepsy, there are visual, cognitive and motor deficits which affect patients' function post-operatively, with varying severity and according to pathology. Consequently, there is a need to map microstructural changes over long time periods and develop/apply methods that work with legacy data. METHODS: In this study, we applied the novel single shell 3-Tissue method to data from a cohort of 4 patients who were scanned 20-years following childhood hemidisconnection surgery and presented with variable clinical outcomes. We have successfully reconstructed tractography of the whole visual pathway from single shell diffusion data with reduced number of gradient directions. RESULTS: All patients presented with degeneration of the visual system characterised by low fractional anisotropy and high mean diffusivity. There were no apparent microstructural differences between both optic nerves that could explain the different level of visual function across patients. However, we provide evidence suggesting an association between the level of visual function and DTI metrics within the remaining components of the visual system, particularly the optic tract, of the contralateral hemisphere post-surgery. SIGNIFICANCE: We believe this study suggests that diffusion MRI can be used to monitor the integrity of the visual system following hemispherectomy and if extended to larger cohorts and a greater number of time-points, including pre-surgically, can provide a clearer picture of the natural history of visual system degeneration. This knowledge may in turn help to identify patients at greatest risk of poor visual outcomes that might benefit from rehabilitation therapies
    corecore