1,887 research outputs found

    The formation of the solar system

    Full text link
    The solar system started to form about 4.56 Gyr ago and despite the long intervening time span, there still exist several clues about its formation. The three major sources for this information are meteorites, the present solar system structure and the planet-forming systems around young stars. In this introduction we give an overview of the current understanding of the solar system formation from all these different research fields. This includes the question of the lifetime of the solar protoplanetary disc, the different stages of planet formation, their duration, and their relative importance. We consider whether meteorite evidence and observations of protoplanetary discs point in the same direction. This will tell us whether our solar system had a typical formation history or an exceptional one. There are also many indications that the solar system formed as part of a star cluster. Here we examine the types of cluster the Sun could have formed in, especially whether its stellar density was at any stage high enough to influence the properties of today's solar system. The likelihood of identifying siblings of the Sun is discussed. Finally, the possible dynamical evolution of the solar system since its formation and its future are considered.Comment: 36 pages, 7 figures, invited review in Physica Script

    Universally diverging Grueneisen parameter and the magnetocaloric effect close to quantum critical points

    Full text link
    At a generic quantum critical point, the thermal expansion α\alpha is more singular than the specific heat cpc_p. Consequently, the "Gr\"uneisen ratio'', \GE=\alpha/c_p, diverges. When scaling applies, \GE \sim T^{-1/(\nu z)} at the critical pressure p=pcp=p_c, providing a means to measure the scaling dimension of the most relevant operator that pressure couples to; in the alternative limit T0T\to0 and ppcp \ne p_c, \GE \sim \frac{1}{p-p_c} with a prefactor that is, up to the molar volume, a simple {\it universal} combination of critical exponents. For a magnetic-field driven transition, similar relations hold for the magnetocaloric effect (1/T)T/HS(1/T)\partial T/\partial H|_S. Finally, we determine the corrections to scaling in a class of metallic quantum critical points.Comment: 4 pages, 1 figure; general discussion on how the Grueneisen exponent measures the scaling dimension of the most relevant operator at any QCP is expande

    Análise da expressão diferencial de fatores de elongação e transerição de tomateiros resistentes e suscetíveis infectados com Tomato chlorotic mottle virus.

    Get PDF
    O objetivo desse trabalho foi analisar a expressão de genes da família dos fatores de elongação e de transcrição do hospedeiro durante a infecção viral por tomato chlorotic mottle virus (ToCMoV) em isolinhas de tomateiros resistentes (LAM157) e suscetíveis (Santa Clara).Resumo 253-1

    Magnetoresistivity and Complete Hc2(T)H_{c2}(T) in MgB2MgB_2

    Full text link
    Detailed magneto-transport data on dense wires of MgB2MgB_2 are reported for applied magnetic fields up to 18 T. The temperature and field dependencies of the electrical resistivity are consistent with MgB2MgB_2 behaving like a simple metal and following a generalized form of Kohler's rule. In addition, given the generally high TcT_c values and narrow resistive transition widths associated with MgB2MgB_2 synthesized in this manner, combined with applied magnetic fields of up to 18 T, an accurate and complete Hc2(T)H_{c2}(T) curve could be determined. This curve agrees well with curves determined from lower field measurements on sintered pellets and wires of MgB2MgB_2. Hc2(T)H_{c2}(T) is linear in TT over a wide range of temperature (7 K  T \le~T~\le 32 K) and has an upward curvature for TT close to TcT_c. These features are similar to other high κ\kappa, clean limit, boron-bearing intermetallics: YNi2B2CYNi_2B_2C and LuNi2B2CLuNi_2B_2C.Comment: minor changes in styl
    corecore