1,286 research outputs found

    Superconductivity and the high field ordered phase in the heavy fermion compound PrOs4_4Sb12_{12}

    Full text link
    Superconductivity is observed in the filled skutterudite compound \PrOsSb{} below a critical temperature temperature Tc=1.85T_\mathrm{c} = 1.85 K and appears to develop out of a nonmagnetic heavy Fermi liquid with an effective mass m∗≈50mem^{*} \approx 50 m_\mathrm{e}, where mem_\mathrm{e} is the free electron mass. Features associated with a cubic crystalline electric field are present in magnetic susceptibility, specific heat, electrical resistivity, and inelastic neutron scattering measurements, yielding a Pr3+^{3+} energy level scheme consisting of a Γ3\Gamma_{3} nonmagnetic doublet ground state, a low lying Γ5\Gamma_{5} triplet excitied state at ∼10\sim 10 K, and much higher temperature Γ4\Gamma_{4} triplet and Γ1\Gamma_{1} singlet excited states. Measurements also indicate that the superconducting state is unconventional and consists of two distinct superconducting phases. At high fields and low temperatures, an ordered phase of magnetic or quadrupolar origin is observed, suggesting that the superconductivity may occur in the vicinity of a magnetic or quadrupolar quantum critical point.Comment: 11 pages, 4 figures, presented at the 3rd international symposium on Advance Science Research (ASR 2002), JAERI Tokai, Ibaraki, Japa

    Novel Coexistence of Superconductivity with Two Distinct Magnetic Orders

    Full text link
    The heavy fermion Ce(Rh,Ir)In5 system exhibits properties that range from an incommensurate antiferromagnet on the Rh-rich end to an exotic superconductor on the Ir-rich end of the phase diagram. At intermediate composition where antiferromagnetism coexists with superconductivity, two types of magnetic order are observed: the incommensurate one of CeRhIn5 and a new, commensurate antiferromagnetism that orders separately. The coexistence of f-electron superconductivity with two distinct f-electron magnetic orders is unique among unconventional superconductors, adding a new variety to the usual coexistence found in magnetic superconductors.Comment: 3 figures, 4 page

    Heavy Fermion Behavior, Crystalline Electric Field Effects, and Weak Ferromagnetism in SmOs_{4}Sb_{12}

    Full text link
    The filled skutterudite compound SmOs_{4}Sb_{12} was prepared in single crystal form and characterized. The SmOs_{4}Sb_{12} crystals have the LaFe_{4}P_{12}-type structure with lattice parameter a = 9.3085 Angstroms. Specific heat measurements indicate a large electronic specific heat coefficient of ~880 mJ/mol K^{2}, from which an enhanced effective mass m^{*} ~ 170 m_{e} is estimated. The specific heat data also suggest crystalline electric field (CEF) splitting of the Sm^{3+} J = 5/2 multiplet into a Gamma_{7} doublet ground state and a Gamma_{8} quartet excited state separated by 37 K. Electrical resistivity rho(T) measurements reveal a decrease in rho(T) below ~50 K that is consistent with CEF splitting of ~33 K between a Gamma_(7) doublet ground state and Gamma_{8} quartet excited state. Specific heat and magnetic susceptibility measurements display a possible weak ferromagnetic transition at ~2.6 K, which could be an intrinsic property of SmOs_4Sb_{12} or possibly due to an unknown impurity phase.Comment: 24 pages, 11 Postscript figures, to be published in Physical Review

    Metal-insulator crossover in superconducting cuprates in strong magnetic fields

    Full text link
    The metal-insulator crossover of the in-plane resistivity upon temperature decrease, recently observed in several classes of cuprate superconductors, when a strong magnetic field suppresses the superconductivity, is explained using the U(1)×SU(2)U(1)\times SU(2) Chern-Simons gauge field theory. The origin of this crossover is the same as that for a similar phenomenon observed in heavily underdoped cuprates without magnetic field. It is due to the interplay between the diffusive motion of the charge carriers and the ``peculiar'' localization effect due to short-range antiferromagnetic order. We also calculate the in-plane transverse magnetoresistance which is in a fairly good agreement with available experimental data.Comment: 4 pages, 3 .eps figures, to appear in Physical Review Letter

    Magnetoresistivity and Complete Hc2(T)H_{c2}(T) in MgB2MgB_2

    Full text link
    Detailed magneto-transport data on dense wires of MgB2MgB_2 are reported for applied magnetic fields up to 18 T. The temperature and field dependencies of the electrical resistivity are consistent with MgB2MgB_2 behaving like a simple metal and following a generalized form of Kohler's rule. In addition, given the generally high TcT_c values and narrow resistive transition widths associated with MgB2MgB_2 synthesized in this manner, combined with applied magnetic fields of up to 18 T, an accurate and complete Hc2(T)H_{c2}(T) curve could be determined. This curve agrees well with curves determined from lower field measurements on sintered pellets and wires of MgB2MgB_2. Hc2(T)H_{c2}(T) is linear in TT over a wide range of temperature (7 K ≤ T ≤\le~T~\le 32 K) and has an upward curvature for TT close to TcT_c. These features are similar to other high κ\kappa, clean limit, boron-bearing intermetallics: YNi2B2CYNi_2B_2C and LuNi2B2CLuNi_2B_2C.Comment: minor changes in styl

    Efeito da temperatura no crescimento de Rhizoctonia solani.

    Get PDF
    Suplemento, ref. 466. Edição dos Resumos do 45º Congresso Brasileiro de Fitopatologia, Manaus, 2012. CBFito 2012

    Magnetic and transport properties of the new antiferromagnetic Kondo-lattice CeNiBi2

    Get PDF
    We report results of the first studies on the magnetic and transport properties of a new material CeNiBi_2. The magnetic susceptibility exhibits a sharp peak at T_N = 6K, indicating an antiferromagnetic phase transition. This antiferromagnetic order below T_N is confirmed by magnetization measurement, which displays a metamagnetic-like transition at H_m = 5 T. Both low-temperature susceptibility and high-field magnetization are suggestive of strong crystalline-electric-field effect in CeNiBi_2. The electrical resistivity shows the presence of Kondo and crystal-field effects with a sharp drop below TN due to the antiferromagnetic ordering. This sharp drop below T_N in the electrical resistivity is suppressed slightly to higher temperatures by an applied magnetic field to 18 T. With increasing magnetic field, the slope of magnetoresistance changes from positive to negative, being indicative of the transition to a ferromagnetic state.Comment: 11 pages, including 4 figure

    Atividade antimicrobiana de extratos hexânicos de própolis e resina ds abelhas Melipona flavolineata, Melipona seminigra, Melipona fasciculata, Frieseomelitta varia e Apis mellifera sobre Xanthomonas axonopodis pv. passiflorae.

    Get PDF
    O presente trabalho teve como objetivo verificar o efeito de extratos hexânicos extraídos a partir de resinas de Melipona flavolineata, M. seminigra, M. fasciculata, Frieseomelitta varia e Apis mellifera sobre o crescimento de Xanthomonas axonopodis pv. passiflorae. Os extratos foram incorporados ao meio 523 na concentração de 1%. Após a solidificação do meio de cultura acrescido dos extratos, foram depositadas alíquotas de 100 µL da suspensão bacteriana ajustada à Abs540= 0,1 em diluição 10-6 e espalhadas com alça de Drigalski. Como testemunha utilizou-se o meio de cultura sem adição de nenhum extrato. Após a incubação por 48h a 28ºC, a avaliação foi realizada através da contagem de UFC das placas. O delineamento experimental foi inteiramente casualizado com quatro repetições. Foi realizada a análise de variância e as médias foram comparadas pelo teste de Scott & Knott a 5% de probabilidade. Todos os extratos hexânicos de própolis inibiram totalmente o crescimento da bactéria, enquanto o extrato de resina proporcionou controle de 95% em relação à testemunha

    Kondo engineering : from single Kondo impurity to the Kondo lattice

    Full text link
    In the first step, experiments on a single cerium or ytterbium Kondo impurity reveal the importance of the Kondo temperature by comparison to other type of couplings like the hyperfine interaction, the crystal field and the intersite coupling. The extension to a lattice is discussed. Emphasis is given on the fact that the occupation number nfn_f of the trivalent configuration may be the implicit key variable even for the Kondo lattice. Three (P,H,T)(P, H, T) phase diagrams are discussed: CeRu2_2Si2_2, CeRhIn5_5 and SmS

    Strong-coupling scenario of a metamagnetic transition

    Full text link
    We investigate the periodic Anderson model in the presence of an external magnetic field, using dynamical mean-field theory in combination with the modified perturbation theory. A metamagnetic transition is observed which exhibits a massive change in the electronic properties. These are discussed in terms of the quasiparticle weight and densities of states. The results are compared with the experimental results of the metamagnetic transition in CeRu_2Si_2.Comment: 5 pages, 3 figures, to appear in PR
    • …
    corecore