10 research outputs found

    Association between plasminogen activator inhibitor-1 and cardiovascular events: a systematic review and meta-analysis

    No full text
    Abstract Background Small studies have implicated plasminogen activator inhibitor-1 (PAI-1) as a predictor of cardiovascular events; however, these findings have been inconsistent. We sought out to examine the potential role of PAI-1 as a marker for major adverse cardiovascular events (MACE). Methods We systematically reviewed all indexed studies examining the association between PAI-1 and MACE (defined as death, myocardial infarction, or cerebrovascular accident) or restenosis. EMBASE, Web of Science, Medline, and the Cochrane Library were searched through October 2016 to identify relevant studies, supplemented by letters to authors and review of citations. Studies reporting the results of PAI-1 antigen and/or activity levels in association with MACE in human subjects were included. Results Of 5961 articles screened, we identified 38 articles published between 1991 to 2016 that reported PAI-1 levels in 11,557 patients. In studies that examined PAI-1 antigen and activity levels, 15.1% and 29.6% of patients experienced MACE, respectively. Patients with MACE had higher PAI-1 antigen levels with a mean difference of 6.11 ng/mL (95% CI, 3.27-8.96). This finding was similar among patients with and without known coronary artery disease. Comparatively, studies that stratified by PAI-1 activity levels were not associated with MACE. In contrast, studies of coronary restenosis suggest PAI-1 antigen and activity levels are negatively associated with MACE. Conclusions Elevated plasma PAI-1 antigen levels are associated with MACE. Definitive studies are needed to ascertain if PAI-1 acts simply as a marker of risk or if it is indeed a bona fide therapeutic target

    Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality

    No full text
    Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation

    Evaluation of an in vitro coronary stent thrombosis model for preclinical assessment

    No full text
    Stent thrombosis remains an infrequent but significant complication following percutaneous coronary intervention. Preclinical models to rapidly screen and validate therapeutic compounds for efficacy are lacking. Herein, we describe a reproducible, high throughput and cost-effective method to evaluate candidate therapeutics and devices for either treatment or propensity to develop stent thrombosis in an in vitro bench-top model. Increasing degree of stent malapposition (0.00 mm, 0.10 mm, 0.25 mm and 0.50 mm) was associated with increasing thrombosis and luminal area occlusion (4.1 +/- 0.5%, 6.3 +/- 0.5%, 19.7 +/- 4.5%, and 92.6 +/- 7.4%, p < 0.0001, respectively). Differences in stent design in the form of bare-metal, drug-eluting, and bioresorbable vascular scaffolds demonstrated differences in stent thrombus burden (14.7 +/- 3.8% vs. 20.5 +/- 3.1% vs. 86.8 +/- 5.3%, p < 0.01, respectively). Finally, thrombus burden was significantly reduced when healthy blood samples were incubated with Heparin, ASA/Ticagrelor (DAPT), and Heparin+DAPT compared to control (DMSO) at 4.1 +/- 0.6%, 6.9 +/- 1.7%, 4.5 +/- 1.2%, and 12.1 +/- 1.8%, respectively (p < 0.01). The reported model produces high throughput reproducible thrombosis results across a spectrum of antithrombotic agents, stent design, and degrees of apposition. Importantly, performance recapitulates clinical observations of antiplatelet/antithrombotic regimens as well as device and deployment characteristics. Accordingly, this model may serve as a screening tool for candidate therapies in preclinical evaluation

    Contrast-free optical coherence tomography:Systematic evaluation of non-contrast media for intravascular assessment.

    No full text
    BackgroundCoronary revascularization using imaging guidance is rapidly becoming the standard of care. Intravascular optical coherence tomography uses near-infrared light to obtain high resolution intravascular images. Standard optical coherence tomography imaging technique employs iodinated contrast dye to achieve the required blood clearance during acquisition. We sought to systematically evaluate the technical performance of saline as an alternative to iodinated contrast for intravascular optical coherence tomography assessment.Methods and resultsWe performed bench top optical coherence tomography analysis on nylon tubing with sequential contrast/saline dilutions to empirically derive adjustment coefficients. We then applied these coefficients in vivo in an established rabbit abdominal stenting model with both saline and contrast optical coherence tomography imaging. In this model, we assessed the impact of saline on both quantitative and qualitative vessel assessment. Nylon tubing assessment demonstrated a linear relationship between saline and contrast for both area and diameter. We then derived adjustment coefficients, allowing for accurate calculation of area and diameter when converting saline into both contrast and reference dimensions. In vivo studies confirmed reduced area with saline versus contrast [7.43 (5.67-8.36) mm2 versus 8.2 (6.34-9.39) mm2, p = 0.001] and diameter [3.08 mm versus 3.23 mm, p = 0.001]. Following correction, a strong relationship was achieved in vivo between saline and contrast in both area and diameter without compromising image quality, artefact, or strut assessment.ConclusionSaline generates reduced dimensions compared to contrast during intravascular optical coherence tomography imaging. The relationship across physiologic coronary diameters is linear and can be corrected with high fidelity. Saline does not adversely impact image quality, artefact, or strut assessment

    Revisiting the Evidence for Dipyridamole in Reducing Restenosis: A Systematic Review and Meta-analysis

    No full text
    Atherosclerosis remains a leading cause of morbidity and mortality, with revascularization remaining a cornerstone of management. Conventional revascularization modalities remain challenged by target vessel reocclusion-an event driven by mechanical, thrombotic, and proliferative processes. Despite considerable advancements, restenosis remains the focus of ongoing research. Adjunctive agents, including dipyridamole, offer a multitude of effects that may improve vascular homeostasis. We sought to quantify the potential therapeutic impact of dipyridamole on vascular occlusion. We performed a literature search (EMBASE and MEDLINE) examining studies that encompassed 3 areas: (1) one of the designated medical therapies applied in (2) the setting of a vascular intervention with (3) an outcome including vascular occlusion rates and/or quantification of neointimal proliferation/restenosis. The primary outcome was vascular occlusion rates. The secondary outcome was the degree of restenosis by neointimal quantification. Both human and animal studies were included in this translational analysis. There were 6,839 articles screened, from which 73 studies were included, encompassing 16,146 vessels followed up for a mean of 327.3 days (range 7-3650 days). Preclinical studies demonstrate that dipyridamole results in reduced vascular occlusion rates {24.9% vs. 48.8%, risk ratio 0.53 [95% confidence interval (CI) 0.40-0.70], I-2 = 39%, P < 0.00001}, owing to diminished neointimal proliferation [standardized mean differences -1.13 (95% CI -1.74 to -0.53), I-2 = 91%, P = 0.0002]. Clinical studies similarly demonstrated reduced occlusion rates with dipyridamole therapy [23.5% vs. 31.0%, risk ratio 0.77 (95% CI 0.67-0.88), I-2 = 84%, P < 0.0001]. Dipyridamole may improve post-intervention vascular patency and mitigate restenosis. Dedicated studies are warranted to delineate its role as an adjunctive agent after revascularization

    Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective

    No full text
    corecore