9 research outputs found

    Intercorrelated random fields with bounds and the Bayesian identification of their parameters: Application to linear elastic struts and fibers

    No full text
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordMany materials and structures consist of numerous slender struts or fibers. Due to the manufacturing processes of different types of struts and the growth processes of natural fibers, their mechanical response frequently fluctuates from strut to strut, as well as locally within each strut. In associated mechanical models each strut is often represented by a string of beam elements, since the use of conventional three-dimensional finite elements renders the simulations computationally inefficient. The parameter input fields of each string of beam elements are ideally such that the local fluctuations and fluctuations between individual strings of beam elements are accurately captured. The goal of this study is to capture these fluctuations in several intercorrelated bounded random fields. Two formulations to describe the intercorrelations between each random field, as well as the case without any intercorrelation, are investigated. As only a few sets of input fields are available (due to time constraints of the supposed experimental techniques), the identification of the random fields' parameters involves substantial uncertainties. A probabilistic identification approach based on Bayes' theorem is employed to treat the involved uncertainties.Engineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research CouncilEngineering and Physical Sciences Research CouncilFonds National de la Recherche LuxembourgLloyd's Register Educational TrustRoyal Academy of Engineerin

    An adaptive variational quasicontinuum methodology for lattice networks with localized damage

    No full text
    Lattice networks with dissipative interactions can be used to describe the mechanics of discrete meso-structures of materials such as 3D-printed structures and foams. This contribution deals with the crack initiation and propagation in such materials and focuses on an adaptive multiscale approach that captures the spatially evolving fracture. Lattice networks naturally incorporate non-locality, large deformations, and dissipative mechanisms taking place inside fracture zones. Because the physically relevant length scales are significantly larger than those of individual interactions, discrete models are computationally expensive. The Quasicontinuum (QC) method is a multiscale approach specifically constructed for discrete models. This method reduces the computational cost by fully resolving the underlying lattice only in regions of interest, while coarsening elsewhere. In this contribution, the (variational) QC is applied to damageable lattices for engineering-scale predictions. To deal with the spatially evolving fracture zone, an adaptive scheme is proposed. Implications induced by the adaptive procedure are discussed from the energy-consistency point of view, and theoretical considerations are demonstrated on two examples. The first one serves as a proof of concept, illustrates the consistency of the adaptive schemes, and presents errors in energies. The second one demonstrates the performance of the adaptive QC scheme for a more complex problem

    A multi-loading, climate-controlled, stationary ROI device for in-situ X-ray CT hygro-thermo-mechanical testing

    Get PDF
    \u3cp\u3eIn-situ CT mechanical testing yields a full 3D description of a sample material’s behaviour under specific loads. In the literature various devices are proposed which enable in-situ CT hygro-, thermo- or mechanical testing, each with its own merits and limitations. However none of them is able to perform advanced hygro-thermo-mechanical tests on specimens subjected to multiple loading modes, while accurately controlling and measuring the force, displacement, temperature and relative humidity in real time. Therefore, this work proposes an in-situ CT device which allows such multi-faceted experiments. Improvements to the current state-of-the-art devices include: (1) a compact, lightweight and rotationally symmetric design that enables high-resolution CT scans by minimization of wobble during scanning, in practically all lab-scale CT scanners; (2) a stationary region of interest by loading the sample from both sides, which enables high resolution CT characterization of materials exhibiting a large fracture strain; and (3) improved testing modularity by exchanging clamping methods to allow samples of various sizes (e.g., circular or rectangular) to be inserted in a variety of ways, thereby facilitating complex experiments such as three- or four-point bending tests. Validation experiments demonstrate that stringent requirements on CT resolution, loading and displacement accuracy and climate control are met. Furthermore, the in-situ testing capabilities of the device were validated by CT characterization of the creasing and folding process of multi-layer cardboard under varying (controlled) levels of relative humidity and temperature.\u3c/p\u3

    A Review of Recent Trends and Challenges in Computational Modeling of Paper and Paperboard at Different Scales

    No full text

    Multiscale Methods for Fracture: A Review ^\bigstar

    No full text
    corecore